

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

TRADE-OFF STUDY FOR THE HIT-TO-KILL
INTERCEPTION OF BALLISTIC MISSILES IN THE

BOOST PHASE

by

Weng Wai Leong

December 2009

 Thesis Advisor: Oleg Yakimenko
 Second Reader Christopher Adams

i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

 Report Documentation Page Form Approved OMB No. 0704-0188
Public Reporting Burden For This Collection Of Information Is Estimated To Average 1 Hour Per Response, Including The Time For Reviewing
Instruction, Searching Existing Data Sources, Gathering And Maintaining The Data Needed, And Completing And Reviewing The Collection Of
Information. Send Comments Regarding This Burden Estimate Or Any Other Aspect Of This Collection Of Information, Including Suggestions For
Reducing This Burden, To Washington Headquarters Services, Directorate For Information Operations And Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, And To The Office Of Management And Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE
December 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Trade-off Study for the Hit-to-kill Interception of
Ballistic Missiles in the Boost Phase
6. Author(S) Weng Wai Leong

5. FUNDING NUMBERS

7. Performing Organization Name(S) And Address(Es)
Naval Postgraduate School
Monterey, Ca 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. Sponsoring /Monitoring Agency Name(S) And Address(Es)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The Views Expressed In This Thesis Are Those Of The Author And Do Not Reflect The
Official Policy Or Position Of The Department Of Defense Or The U.S. Government.

12a. Distribution / Availability Statement
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

In recent conflicts, ballistic missiles have been used to achieve military and psychological objectives. With the
proliferation of weapons of mass destruction (WMD), the threat of ballistic missiles as delivery platform for WMD is
of concern. Defense against such threats becomes important.

There are different guidance laws, like pursuit and proportional navigation (PN), for the missile interception of
aerial targets. A new guidance algorithm was developed by John A. Lukacs and Prof Yakimenko in 2006 to
demonstrate the feasibility of intercepting a ballistic missile during the boost phase. This trajectory-shaping guidance
algorithm uses the direct method of calculus of variations that maximizes the kinetic energy transfer from the
interceptor to the target.

A study was conducted by applying this guidance law and examining the trade-off between the various critical
parameters, like intercept geometry, time, altitude and trajectory, in the optimized solution,. It provides insights into
the feasibility and limitations of this guidance. A literature review of the drag model and comparison with the
compensated PN guidance was also conducted. A new induced drag model was developed for future studies. The
results verified that the trajectory-shaping guidance is feasible for the interception of ballistic missiles in the boost
phase for a wide range of interceptor launch locations with respect to a ballistic missile detection point.

15. NUMBER OF
PAGES

135

14. Subject Terms
Missile Guidance Laws, Trajectory Shaping Guidance, Trade-offs, Induced Drag Polar, Optimal
Flight Path, Cost Function, Boost Phase Intercept, Intercept Geometry, Time-to-Intercept

16. PRICE CODE

17. Security Classification Of
Report

Unclassified

18. Security Classification Of This
Page

Unclassified

19. Security
Classification Of
Abstract

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

Approved for public release; distribution is unlimited

TRADE-OFF STUDY FOR THE HIT-TO-KILL INTERCEPTION OF
BALLISTIC MISSILES IN THE BOOST PHASE

Weng Wai Leong

Lieutenant Colonel, Republic of Singapore Air Force
Bachelor of Engineering (Mechanical), Nanyang Techonological University, Singapore, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2009

Author: Weng Wai Leong

Approved by: Prof Yakimenko
Thesis Advisor

Christopher Adams

 Second Reader

Knox Milsap
Dean, Graduate School of Mechanical and Aeronautical
Engineering

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

ABSTRACT

In recent military conflicts, ballistic missiles have been used to achieve military

and psychological objectives. With the proliferation of weapons of mass destruction

(WMD), the growing threat of ballistic missiles being used as a delivery platform for

WMD by rogue nations or militant groups becomes a concern for many countries.

Defense against such threats becomes increasingly important.

There are different guidance laws for the missile interception of aerial targets.

These include pursuit, proportional navigation (PN) guidance as well as its variants. A

new guidance algorithm was developed by John A. Lukacs IV and Prof Yakimenko in

2006 to intercept a ballistic missile during the boost phase by a missile interceptor. This

TS guidance algorithm uses the direct method of calculus of variations that maximizes

the kinetic energy transfer from a surface-launched missile to a ballistic missile target.

A trade-off study was conducted by applying this guidance law in simulated

ballistic missile interception. This study examines the interactions and trade-offs between

the various critical parameters in the intercept solution, like the endgame intercept

geometry, time-to-intercept and intercept altitude. It provides insights into the feasibility

and limitations of the TS guidance algorithm. A literature review of the drag model used

in the algorithm and comparison of the new guidance with the compensated PN guidance

was also conducted. A new induced drag model was developed for future studies.

The results verified that the trajectory-shaping guidance is feasible for the

interception of ballistic missiles in the boost phase for a wide range of interceptor launch

locations with respect to a ballistic missile detection point. A better understanding of the

trade-offs between the key parameters allows users to optimize the performance of this

guidance.

 vii

THIS PAGE INTENTIONALLY LEFT BLANK

 viii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. THESIS ORGANIZATION..5

II. SIMULATION AND MODELING…………………………………………………7
A. DESCRIPTION OF TRAJECTORY SHAPING GUIDANCE...................7
B. SIMULATION SOFTWARE ARCHITECTURE......................................10
C. TARGET MODELING...10

1. Ballistic Missile Physical Specifications ...10
2. The Ballistic Missile Model Program...11

D. INTERCEPTOR MODELING...14
1. Basic Definitions and Assumptions ..14
2. Interceptor Missile Model Program...14

E. INITIALIZATION ..16
F. COMMON FUNCTIONS ..16

1. SMDragC.m and BRDrag.m...16
2. STatmos.m ..17

G. THE FLIGHT PROGRAM ..18

III. COMPARISON OF COMPENSATED PROPORTIONAL NAVIGATION
WITH TRAJECTORY-SHAPING GUIDANCE ...21
A. PROPORTIONAL NAVIGATION GUIDANCE.......................................21

B. COMPENSATED PROPORTIONAL NAVIGATION23
C. DISADVANTAGES OF COMPENSATED PN GUIDANCE FOR

BOOST PHASE INTERCEPTION..23
D. ADVANTAGES OF TRAJECTORY SHAPING GUIDANCE24

IV. INDUCED DRAG MODEL..27
A. AERODYNAMIC DRAG ...27
B. COMPONENTS OF DRAG..27
C. INDUCED DRAG POLAR ...28

V. RESULTS AND DISCUSSIONS..33
A. FEASIBILITY OF THE TRAJECTORY SHAPING GUIDANCE33
B. REGION OF POSSIBLE DEPLOYMENT POSITION OF THE

INTERCEPTOR MISSILE...35
C. EFFECT OF VARYING THE INTERCEPT GEOMETRY

COEFFICIENT..37
D. INTERCEPT GEOMETRY TRENDS ..40

VI. CONCLUSIONS ..43

APPENDIX A: TABLES AND PLOTS OF SIMULATION RESULTS45

APPENDIX B: PARTICIPATION IN AIAA YOUNG PROFESSIONAL ROCKET
LAUNCH COMPETITION IN MAY 2009...57

 ix

APPENDIX C: INDUCED DRAG PROGRAMME DEVELOPED.................................69
1. ZLDragC_mod.m...69

APPENDIX D: MODELING PROGRAM CODE ...71
A. 3DOF INTERCEPTOR...71

1. SMFlight3.m...71
2. SMParam3.m..76
3. SMDrag.m...78

B. 3DOF TARGET ...79
1. BRFlight3.m ...79
2. BRParams3.m...82
3. BRDrag.m...83

C. GUIDANCE ALGORITHMS...84
1. SMGuidance.m...84
2. SMGuidanceCost.m...89
3. SMTrajectory.m...92

D. COMMON FUNCTION - STANDARD ATMOSPHERE.........................98
1. STatmos.m ..98

APPENDIX E: DETAILED DESCRIPTION OF TRAJECTORY SHAPING
GUIDANCE (REPRODUCED FROM [10]) ...101
A. PROBLEM STATEMENT ...101
B. CALCULUS OF VARIATIONS ..102
C. PROGRAM DEVELOPMENT ..106

1. Boundary Conditions...106
2. Separating and Recombining Space and Time108
3. Reference Trajectory ...109
4. Inverse Dynamics ...111
5. Cost and Penalty Functions...112

LIST OF REFERENCES..115

INITIAL DISTRIBUTION LIST ...117

 x

LIST OF FIGURES

Figure 1. Phases of Ballistic Missile Trajectory [3]..2
Figure 2. Ballistic Missile Interception by Ground-launched Missile [5].........................3
Figure 3. TPD-2 ICBM (left) and SM-3 Standard Missile (right) [11,12]........................8
Figure 4. Reach of the TPD-2 ICBM Launched from North Korea..................................8
Figure 5. The SM-6 Standard Missile [14]..9
Figure 6. Comparison of the size of TPD-2 and M-6 Standard Missile [after 15]............9
Figure 7. Comparison of the size of TPD-2 and M-6 Standard Missile [15]10
Figure 8. Ballistic Missile Flight Path [Ref] ..11
Figure 9. TPD-2 Thrust Profile (Boost Phase) [Ref]..12
Figure 10. TPD-2 Ballistic missile Mass (Boost Phase Only) ..13
Figure 11. TPD-2 Fly-out Range...13
Figure 12. TPD-2 Altitude Profile for Entire Flight (left) and Boost Phase (right)14
Figure 13. SM-6 Interceptor Thrust Profile...15
Figure 14. SM-6 Interceptor Mass (Boost Phase Only) ..16
Figure 15. Drag Coefficient by Mach Number and Flight Phase......................................17
Figure 16. Atmospheric Temperature Variation by Altitude ..18
Figure 17. Atmospheric Density by Altitude ..18
Figure 18. Atmospheric Pressure Variation by Altitude ...18
Figure 19. Intercept Geometry for PN Guidance [after 21] ..22
Figure 20. Transonic Drag Rise ..29
Figure 21. Parabolic Drag Polar for Asymmetric Body..29
Figure 22. Parabolic Drag Polar for Symmetric Body ..30
Figure 23. Parabolic Drag Polar for Different Mach Number (Symmetric Body)............31
Figure 24. Region of Interceptor Position for Interception of Ballistic Missile................36
Figure 25. Typical Intercept Geometry ...39
Figure 26. Illustration of Angle between interceptor Launch Position and Ballistic

Missile Trajectory Plane ..41
Figure 27. Effect of Interceptor Launch Direction on Intercept Geometry.......................41
Figure 28. Team Members and Advisor with Their Rocket at the Launch Site................57
Figure 29. Timeline for the Rocket Launch Project..60
Figure 30. The Specifications and Dimensions of the Quasar Rocket Kit........................61
Figure 31. The Specifications and Dimensions of the Quasar Rocket Kit........................62
Figure 32. The Specifications and Dimensions of the Quasar Rocket Kit........................63
Figure 33. Team Members and Advisor with Their Rocket at the Launch Site................64
Figure 34. Team Members and Advisor with Their Rocket at the Launch Site................65
Figure 35. Team Members and Advisor with Their Rocket at the Launch Site................66
Figure 36. Official Altitude Plot for Team Peacock ...67
Figure 37. Variation of Path with f and 10x (after [Ref 18])...105

Figure 38. Variation of First Derivative of Path with f and 10x106

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1. Specifications of TPD-2 Ballistic Missile..11
Table 2. Specifications of SM-6 Interceptor Missile ...14
Table 3. WGS-84 Values ...16
Table 4. No of Iterations Required for Feasible Interceptor Solution (WIA = 0)..........34
Table 5. No of Iterations Required for Feasible Interceptor Solution (WIA = 100)......34
Table 6. No of Iterations Required for Feasible Interceptor Solution (WIA = 1000)35
Table 7. Time-To-Intercept, Altitude And Impact Angle Deviation For Different

Intercept Geometry Coefficient, WIA...38
Table 8. Budget for Rocket Launch Competition ..59
Table 9. Interceptor Known Data...107

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

LIST OF ACRONYMS AND ABBREVIATIONS

3-D 3-Dimentional

3DoF 3 Degree-of-Freedom

AIAA American Institute of Aeronautical and Astronautics

BMDS Ballistic Missile Defense System

CG Centre of Gravity

CP Centre of Pressure

DoD Department of Defense

DPRK People’s Democratic Republic of Korea

EFC Electronic Forward Closure

ERAM Extended Range Anti-Air Warfare missile

ICBM Inter-Continental Ballistic Missile

LOS Line-of-Sight

PN Proportional Navigation

TPD-2 Taepo-Dong 2 Ballistic Missile

SM-6 Standard Missile - 6

TS Trajectory Shaping

WMD Weapons of Mass Destruction

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

ACKNOWLEDGMENTS

The author wishes to acknowledge the patience and understanding of his wife,

Lee Ling, and his two lovely girls, Kelly and Jolee, for my not being able to spend

enough time with them while working on this thesis, both at home and in school.

The author would also like to thank his thesis advisor for his guidance and advice

in the project. His helpfulness, understanding and friendship have made the whole

journey such a positive experience for the author.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

In recent conflicts, notably the first Gulf War in 1992 and the Israeli-Lebanon

conflict in 2007, the use of tactical ballistic missiles to achieve military and psychological

objectives had alerted political and military leaders around the world of the immense

threat posed by such weapons. With the proliferation of weapons of mass destruction

(WMD), there has been a greater concern that tactical ballistic missiles will be used by

rogue nations or militant groups, as a delivery platform for such weapons [1]. The

outcome can be devastating, with the loss of many innocent lives and large-scale

destruction. Many countries have invested substantially in developing ballistic missile

defense systems as a strategy against such threats. In particular, the United States

Department of Defense (DoD) was directed to develop a conceptual framework in

2002—the Ballistic Missile Defense System (BMDS), in which active defense of

intercepting incoming ballistic missiles in all phases of its trajectory, is a major strategy

[2]. An integrated ballistic missile defense system was subsequently developed based on

a layered, defense-in-depth strategy. In order to intercept a ballistic missile, flying at

supersonic speed and high altitude, the interceptor must have the required response time,

speed and accuracy. The interception can take place in any of the three distinct phases—

boost, midcourse or terminal, as illustrated in Figure 1.

2

Figure 1. Phases of Ballistic Missile Trajectory [3]

During the boost phase, the ballistic missile rocket motors are firing in order to

accelerate the missile to a high trajectory altitude. The advantages of boost phase

interception are that the hot and bright rocket exhaust plume makes detection and

targeting easier, and decoys cannot be used during this phase. The disadvantages lie in

the geographical siting of the interceptor system (which has to be close to hostile

territory) and the short time to intercept, typically about 180 seconds. Figure 2 shows

images of ballistic missile interception by ground-launched intercept missile. In some

literatures, defense analysts and scientists believed that interception of ballistic missile by

surface-launched interceptor using established guidance laws is not feasible. However,

the trajectory-shaping guidance developed by Lukacs and Prof Yakimenko in 2006 [4]

shows that boost phase interception is possible, with promising results on the

effectiveness of such interception, subject to limitations.

3

Figure 2. Ballistic Missile Interception by Ground-launched Missile [5]

In the mid-course phase, the ballistic missile is in space after the rocket burns out.

The coast period through space before re-entering the atmosphere can take several

minutes, up to 20 minutes for a long-range Inter-Continental Ballistic Missile (ICBM).

The advantage of intercepting a ballistic missile in this phase is that there will be

sufficient decision and intercept time as well as a greater flexibility in the geographical

defensive position of the interceptor system. However, such interception would require a

larger and, hence, heavier interceptor missile, complemented by sophisticated radar and

other sensors to handle potential space-based decoys.

In order to intercept a ballistic missile in the terminal phase, the interceptor

missile would have to do so after the ballistic missile re-enters the atmosphere. The

advantages lie in the requirement for smaller and lighter interceptor missile, less

sophisticated radar and lower possibility of decoy as they are not likely to work in this

phase. The disadvantages are the very short reaction time (in the region of 30 seconds or

less), less defended geographical coverage and possible effect of hazardous materials

over the target area in the case of detonation of chemical, biological or nuclear

warhead(s) mid-air.

This paper focuses on the interception of ballistic missiles in the boost phase.

Intercepting a ballistic missile in its boost phase is the ideal solution for missile defense,

since the missile is most vulnerable during this phase of its flight. This is done usually

4

over the launch territory. There are, however, many challenges associated with this phase.

The interceptor will have to contend with large acceleration rates, very short reaction

time and requires reliable scanning and tracking [5,6]. There are several systems are

under development for conducting boost phase interception, they include ground-based

missiles, airborne lasers and space-based intercept missiles.

This study only looks at surface-based missile interceptor. The missile guidance

law is one of the most important factors that determines the feasibility and effectiveness

of the intercept solution. If intercept is possible, then the next step is the interceptor’s

capability to kill the target. With a very short engagement time, the interceptor missile

needs a high speed and energy to reach the target. This imposes a limitation on the size of

warhead. Earlier concepts and studies recognized that that a simple warhead effect is not

sufficient to destroy an ICBM, hence the initiation of the development of hit-to-kill

technologies [7,8]. This concept relies on relatively smaller high speed missile, guided

accurately to the target and transferring maximum kinetic energy to the ballistic missile

for a kill. It suggests some form of geometry control during impact.

The actual impact geometry is not an important parameter for most guidance laws

implemented in intercept missiles which uses warhead effect (proximity fuze) as their

main kill mechanism. However, for a hit-to-kill endgame condition which demands for

maximum transfer of kinetic energy to the target missile, the intercept geometry

commands a greater attention and has to be controlled as an input to the guidance law.

The objective of this thesis is to conduct a trade-off study to evaluate the

effectiveness of the hit-to-kill trajectory-shaping guidance through simulation, using the

guidance algorithm developed by Lukacs and Prof Yakimenko in 2006. The code

developed for the guidance law will “generate the interceptor’s entire flight path in order

to minimize the distance traveled, minimize the time to intercept, and maximize kinetic

energy transfer by controlling the interception geometry while providing near-optimal

flight path to interception. This will be done by utilizing the direct method of calculus of

variations combined with inverse dynamics theory to reverse engineer in real time, an

optimal flight path using the missile’s onboard sensors and computers”. [9]

5

B. THESIS ORGANIZATION

This thesis consists of six chapters. Chapter I provides a brief introduction and

overview of ballistic missiles interception in the boost phase and outlines the objectives

of this thesis.

Chapter II provides a literature review of the models and guidance program,

developed by Lukacs and Prof Yakimenko in 2006, based on the trajectory-shaping

guidance law. The trade-off study is based on this guidance algorithm, with only slight

modification in certain areas, for the simulation. For completeness, it is instructive to

provide a brief overview of the guidance law, key characteristics and the MATLAB

program developed as a prelude to the trade-off study and discussion. The detailed

description of the theory behind the guidance algorithm and models used is appended in

Appendix E. Much of the content in this chapter is extracted from the thesis written by

Lukacs [10].

Chapter III discusses an alternative guidance law—the well-established

Proportional Navigation (PN) guidance that is used in many advance missiles currently in

service. It provides some background information on PN guidance and makes some

comparison with the trajectory-shaping guidance.

Chapter IV describes the drag model that is used in the trajectory-shaping

guidance code and presents the need to incorporate an induced drag model as an

enhancement to the existing model for better estimation of drag on both the ballistic and

interceptor missile.

Chapter V summarizes the results and discusses the feasibility of employing such

guidance in a real-world scenario.

The Appendices include data and plots of the simulation results obtained, report

on the author’s participation in the AIAA Rocket Launch Competition, MATLAB code

for the induced drag model, detailed description of the trajectory-shaping guidance and

the complete MATLAB program codes.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. SIMULATION AND MODELING

A. DESCRIPTION OF TRAJECTORY SHAPING GUIDANCE

In 2006, Lukacs and Prof Yakimenko [9] developed a simulation code in

MATLAB as a demonstration of the feasibility of intercepting a ballistic missile during

the boost phase by a surface-launched interceptor missile using the Trajectory Shaping

guidance law (henceforth termed as TS guidance in the report).

The TS guidance uses the principle of flight path optimization from the

interceptor to the predicted target position. It relies on high-order polynomial as a

reference function for the flight path and uses virtual as opposed to physical domain in

optimization process. A preset thrust history is used in the computation of interceptor

flight path. The flight path is derived by minimization a combined performance index

including intercept geometry, time-to-intercept, penalty on altitude and dynamic

constraints. The performance index, J is expressed in the following equation,

J = tgo
2 + WIA(μ – μdesired)

2 + P1

+ P2

where tgo is the time-to-intercept, μ is the impact angle, P1

is the penalty on intercept

altitude and P2 is the penalty on dynamic constraints. The application of such guidance is

particularly suitable for interception of targets with relatively fixed predicted trajectory,

like that of a ballistic missile in the boost phase.

In the simulation, the ballistic missile target was modeled after the Taepo-Dong 2

(TPD-2) ballistic missile developed by the People’s Democratic Republic of Korea

(PDRK, also known as North Korea) while the U.S.-made SM-6 Standard missile, an

upgraded and extended range version of the SM-3 (shown in Figure 3) was used as the

interceptor missile. A 3 degree-of-freedom (3DoF) mathematical model was previously

developed and used to simulate the trajectory and flight characteristics of both the

ballistic and interceptor missile based on available missile data from the open source. The

intercept path is continuously calculated onboard the interceptor missile as a two-point

boundary value problem, using Direct Methods of Calculus of Variation to calculate a

near-optimal flight path and the control commands necessary to achieve it (refer to

Appendix 3 for the detailed description of the TS guidance).

8

Figure 3. TPD-2 ICBM (left) and SM-3 Standard Missile (right) [11,12]

The TPD-2 ballistic missile, developed by North Korea is believed to be an

intercontinental ballistic missile (ICBM) capable of an effective range of 6000 to 6500

km, with a 3-stage booster [13]. This put Alaska and all Asia Pacific countries up to

northern Australia within reach of the TPD-2, from launch sites within North Korea [see

Figure 4]. In order to have a feasible solution of intercepting this missile during its boost

phase, the interceptor must be fired from a ship or land-based launcher within range of

the ballistic missile launch site.

Figure 4. Reach of the TPD-2 ICBM Launched from North Korea

The SM-6 (shown in Figure 5) is the U.S. Navy's latest Extended Range Anti-Air

Warfare missile (ERAM) that employs active-homing terminal guidance—a key feature

that allows for accuracy necessary to intercept an ICBM in the boost phase. The SM-6

9

missile is the upgraded and extended range version of the SM-3, currently under

development by Raytheon, for the U.S. Navy as the next generation anti-ballistic missile

defense system. It is designed to be capable of intercepting ballistic missiles in the boost

phase if deployed within range of the ballistic missile launch site and complemented by

suitable sensor systems to detect the launch. Figure 6 shows the comparison of the size of

the TPD-2 and SM-6.

Figure 5. The SM-6 Standard Missile [14]

Figure 6. Comparison of the size of TPD-2 and M-6 Standard Missile [after 15]

This chapter provides a brief overview of the 3-dimensional (3D) target model

that operates in the Earth’s gravitational field, using available TPD-2 data from the open

source. A 3-D interceptor model, based on the SM-6 specification, was developed that

operates in the Earth’s gravitational field, was also used. Brief description of the various

function files, assumptions made, data and values used in the simulation study is also

presented to help the reader understand the program flow. A listing of the MATLAB

program code as well as detailed description and theory of the various functions are

reproduced in Appendices D and E, respectively, for completeness and easy cross-

reference.

10

B. SIMULATION SOFTWARE ARCHITECTURE

 The general program flow of the 3DoF simulation conducted is shown in Figure

7. The remaining sections of this chapter will briefly describe the function of the main

blocks shown in the architecture, models used and the general flow of the simulation.

3
D
O
F

Function
BRParams3.m

Function
SMDrag.m, BRDrag.m

Function
STatmos.m

Complementary M-Script
BRFlight3.m

Main M-script
SMFlight3.m

Function
SMGuidance.m

Function
SMTrajectory.m

Embedded function
fminsearch.m

Function
SMGuidanceCost.m

plotting

plotting

Figure 7. Comparison of the size of TPD-2 and M-6 Standard Missile [15]

C. TARGET MODELING

1. Ballistic Missile Physical Specifications

Table 1 shows the physical characteristics and specification of the TPD-2 missile

[13].

 Overall Stage 1 Stage 2

Length 32 m Diameter 2.2 m 1.335 m

Payload 750-1000 kg Length 16 m 14 m

Range 3500–4300 km Launch Weight ~60,000 kg 15,200 kg

Stages 2 Thrust ~103,000 kgf 13,350 kgf

11

 Fuel / Oxidizer
TM-185 / AK-

27I
TM-185 / AK-

27I Thrust
Chambers

4,1

 Propellant Mass - 12,912 kg

Type LR ICBM Burn Time ~125 s 110 s

Table 1. Specifications of TPD-2 Ballistic Missile

2. The Ballistic Missile Model Program

The 3DoF model developed by Lukacs and Prof Yakimenko in 2006 comprises a

series of MATLAB functions on an iterative integration loop, using 4 function files to

accomplish the modeling. A brief description of each function is as follows:

1. BRFlight3.m - integrates each time step to determine the current position,

attitude, and aerodynamic forces acting on the rocket/missile;

2. BRParams3.m - determines the mass of the ballistic missile and the

surface reference area;

3. BRDrag.m - determines the drag coefficient;

4. STatmos.m – determines the properties of the local atmosphere;

The program BRFlight3.m generates a ballistic flight path of the ballistic missile

target based on the model developed by Zarchan [16]. The program generates a 3-D

flight path that is contained within the 2-D x-z plane shown in Figure 7, where the

asterisks represent the staging events.

-1 0 1 2 3 4 5

x 10
6-2

-101
2

x 10
6

0

1

2

x 10
6

X position (m)Y position (m)

Z
 p

os
it

io
n

(m
)

Figure 8. Ballistic Missile Flight Path [Ref]

12

The launch position and angle are as follows:

0

0

0

0

0

Re

x

y

z





 Θ = 85o

where Re is the radius of the Earth (6,378,137 m) based on WGS-84 system.

The thrust is assumed fixed for each stage of the propulsion. At 130 and 240

seconds after launch, the thrust drops instantaneous to represent the staging events. At

completion of the boost phase, the thrust is zero. The thrust profile of the two stages is

shown in Figure 8.

0 50 100 150 200 250
0

2

4

6

8

10

12
x 10

5

T
hr

us
t (

N
)

Time (sec)

Figure 9. TPD-2 Thrust Profile (Boost Phase) [Ref]

In order to account for the aerodynamic forces, drag has to be calculated.

Atmospheric conditions, like density and temperature, are first determined using the

function STatmos.m. The missile drag coefficient, CD is then computed by the function

BRDragC.m. This is followed by calculating the drag force.

The ballistic missile’s mass is a simple function of time (as shown in Figure 9)

and this is computed using the function BRParams3.m. The mass drops sharply during

the staging events at 130 and 240 seconds. After the completion of the boost phase, the

mass remains constant for the remaining duration of the flight.

13

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 10

4

R
oc

ke
t M

as
s

(k
g)

Time (sec)

Figure 10. TPD-2 Ballistic missile Mass (Boost Phase Only)

The final step of the ballistic missile model is to record all the data for the ballistic

missile. This data will be called by the interceptor model to simulate detection by the

missile’s onboard sensors. The interceptor missile will then register the location and

velocity of the target missile at the appropriate intervals. In this program, a 60-second

delay is assumed for the launch of the interceptor missile to account for the detection and

decision loop.

The final ballistic fly-out range and the altitude profile predicted by the model is

presented in Figure 10 and 11.

0 500 1000 1500 2000 2500 3000 3500 4000

0

500

1000

1500

2000

2500

3000

X position (km)

Z
 p

os
it

io
n

(k
m

)

Figure 11. TPD-2 Fly-out Range

14

0 500 1000 1500 2000

0

500

1000

1500

2000

2500

3000

Time (sec)

A
lt

it
ud

e
(k

m
)

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

Time (sec)

Figure 12. TPD-2 Altitude Profile for Entire Flight (left) and Boost Phase (right)

D. INTERCEPTOR MODELING

1. Basic Definitions and Assumptions

The basic specifications of the SM-6 missile are presented in Table 2 [17].

 Overall Stage 1 Stage 2

Length 6.5 m Diameter 0.53 m 0.34 m

Payload 115 kg Length 1.72 m 4.78 m

Range 150 km Launch Weight 712 kg 686 kg

Stages 2 Thrust - -

 Fuel / Oxidizer HTPB-AP TP-H1205/6 Thrust
Chambers

1,1
 Propellant Mass 468 kg 360 kg

Type ERAAW Burn Time 6 s -

Table 2. Specifications of SM-6 Interceptor Missile

2. Interceptor Missile Model Program

The 3DOF model used in the program comprises 4 MATLAB functions files ran

on a repeating integration loop. A brief description of the function files are as follows:

1. SMFlight3.m - integrates each time step to determine the current

position, attitude, and aerodynamic forces acting on the missile;

15

2. SMParams3.m - determines the mass of the interceptor missile and

the surface reference area;

3. SMDrag.m - determines the drag coefficient;

4. STatmos.m – determines the properties of the local atmosphere.

Drag is calculated in a similar fashion as that implemented in the ballistic missile

model. The SMParams.m function uses the same methodology as the BRParams.m

function to calculate the reference surface area and mass.

The thrust profile for the interceptor missile is also a two-step curve, just like the

ballistic missile profile. The only difference is the timing for the staging event. This is

shown in Figure 11. The staging event occurs at 6 and 26 seconds.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

5

Time (sec)

T
hr

us
t (

N
)

Figure 13. SM-6 Interceptor Thrust Profile

The mass of the interceptor mission changes at 6 and 26 seconds to represent the

staging events. Figure 13 shows the mass profile. It shows a distinct drop at 6s and a

constant mass after 26s.

16

0 5 10 15 20 25
400

600

800

1000

1200

1400

1600

1800

Time (sec)

In
te

rc
ep

to
r
M

as
s

(k
g)

Figure 14. SM-6 Interceptor Mass (Boost Phase Only)

E. INITIALIZATION

For initialization, the earth geographical data required was based on the WGS84

values presented in Table 3. [18]:

Earth's Radius, Re 6,378,137 m

Earth's Semi-Minor Axis, b 6,356,752 m

Earth's Flattening (1/Ellipticity), f 1/298.257223563

Earth's Rotation Rate (ΩzE) 7.292116 e-5 rad/sec

Earth's Gravitational Constant, GM 3.986004418e14 m3/s2

Table 3. WGS-84 Values

F. COMMON FUNCTIONS

Two functions were commonly by all the models. They are:

1. SMDragC.m and BRDrag.m

The drag on the missile is dependent on two conditions, the Mach number and the

phase the missile—boost or glide. Mach number represents the speed of missile and the

phase will determine the presence or absence of the base drag. The plot of drag

17

coefficient with Mach number of the missiles is shown in Figure 14 [19]. The same

function is applied through two drag files in the interceptor and ballistic missile model

respectively.

0 1 2 3 4 5 6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mach Number

Z
er

o
 L

if
t

D
ra

g
C

o
ef

fi
ci

en
t

Drag Coefficient by Mach Number and Boost Phase

Boost Phase

Glide Phase

Figure 15. Drag Coefficient by Mach Number and Flight Phase

Having obtained the drag coefficient and computed the dynamic pressure

computed, drag can be calculated.

2. STatmos.m

The atmospheric parameters, which are dependent on altitude, are computed by

STatmos.m function file. The calculation was based on the 1976 standard atmospheric

survey, and includes values up to 86 km in a tabular format. Figures 15–17 show the

atmospheric charts used by STatmos.m to derive all the parameters required.

180 200 220 240 260 280 300
0

10

20

30

40

50

60

70

80

90

Temperature (K)

A
lt

it
u

d
e

(k
m

)

Atmospheric Temperature Variation by Altitude

18

Figure 16. Atmospheric Temperature Variation by Altitude

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

70

80

90

Density (kg/m3)

A
lt

it
u

d
e

(k
m

)

Atmospheric Density Variation by Altitude

Figure 17. Atmospheric Density by Altitude

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Pressure (kPa)

A
lt

it
u

d
e

(k
m

)

Atmospheric Pressure Variation by Altitude

Figure 18. Atmospheric Pressure Variation by Altitude

G. THE FLIGHT PROGRAM

Once the previous iteration (or the initialization) has been integrated, it is returned

to the program as the current values. The program then uses these values to calculate all

the descriptive values of the system, apply the corrective time- and position- dependant

factors, and calculate the derivatives for the next iteration.

The BRParams.m and SMParams.m functions were called to determine the

reference areas for the control surfaces and missile plan form areas. The program then

calls the function ACoeff.m to determine several necessary aerodynamic coefficients.

The function inputs are angle of attack, altitude, and pitch control surface deflection.

19

The respective missile model will call the function SMDrag.m and BRDrag.m to

determine the value of the drag coefficient. Drag and thrust are then calculated and the

execution is returned to the main program.

The trajectory of the interceptor missile is generated by the function

SMTrajectory.m by applying the TS guidance law through the SMGuidance.m function.

This is an iterative process, starting with a ‘guess’ of the interceptor final states and

subsequently performing trajectory optimization by calling sub-routine

SMGuidanceCost.m to minimize the cost and penalty of each iterative flight path

generated. The optimized flight path is then returned to SMTrajectory for execution

20

THIS PAGE INTENTIONALLY LEFT BLANK

21

III. COMPARISON OF COMPENSATED PROPORTIONAL
NAVIGATION WITH TRAJECTORY-SHAPING GUIDANCE

In order to understand the guidance laws, it is useful to understand what

“guidance” is. Guidance is the logic that issues steering commands to the vehicle to

accomplish certain flight objectives’ [20]. In the case of a missile and its target, it is the

algorithm the missile uses to guide itself in an intercept path with the target, through

autopilot commands given to its control surfaces, like fins or wings. In current interceptor

missiles being fielded or deployed, a number of guidance laws were used. The type of

guidance law implemented depends on the mission and the type of targets the missile is

designed for. Examples of better-known guidance laws are the Beam Rider, Pure Pursuit,

Proportional Navigation and its variants.

A. PROPORTIONAL NAVIGATION GUIDANCE

PN guidance or its variants, like augmented or compensated PN, are the most

common guidance law implemented in modern missiles. PN guidance has proven itself in

many operations to be effective against maneuvering target, especially in an air-to-air

duel or surface-to-air interception. It can be found in many air-to-air, air-to-surface and

surface-to-air applications. In proportional navigation, the fundamental principle lies in

the rate of change of the missile heading being kept proportional to the rate of rotation of

the line-of-sight (LOS) from the missile to the target. The guidance system points the

differential velocity vector at the target [7]. Figure 18 illustrates the geometry of

interception using the PN guidance.

22

Figure 19. Intercept Geometry for PN Guidance [after 21]

In order for interception to occur, the missile heading angle, Ψ and the LOS angle,

λ, must be kept constant. If the target increases speed, then λ will increase and the

interceptor must correspondingly increase Ψ to maintain its interception course. The rate

of change of both angles must be proportional, given by the expression [16],

 N   (III.A.1)

where N is the proportionality constant, which depends on the target lead factor of the

interceptor (usually between the values of 3-5 depending on the interceptor missile’s

maneuverability). The interceptor will maneuver until 0  (no more changes in LOS

rate with the target), at which point 0  . The interceptor continuously adjusts itself to

maintain the above condition till interception (or a miss) occurs.

During the intercept process, the missile seeker continuously points itself at the

target to derive the LOS rate and provides a signal to the guidance computer. The

guidance computer in turn will convert the feedback into an acceleration command to the

control surfaces to physically steer the missile. The normal acceleration to the missile’s

velocity vector is given by

 Da V 


 (III.A.2)

which can be correlated to the LOS rate

 Da NV 


 (III.A.3)

23

This is applicable to a 2-D case. Zipfel [20] develops a 3-D dimensional PN guidance law

with the expression

 D OE
va NV u g  


 (III.A.4)

where VE is the cross product of the LOS frame with respect to the inertia Earth frame,

vu is the unit vector of DV


, and g is the added gravity bias, which counteracts the sagging

tendency of the trajectory under seeker control. This form of guidance is termed by Zipfel

as Pure PN.

B. COMPENSATED PROPORTIONAL NAVIGATION

Pure PN, however, is not commonly implemented in its original form. The thrust

generated by the interceptor’s propulsion creates a parasitic acceleration in the LOS angle

that has to be compensated in the autopilot command. Guidance in this form is termed

compensated PN. The parasitic acceleration projected onto the LOS plane can be

expressed as follows:

    LOS wLOS
m w ma R a (III.B.1)

It is then subtracted from the PN command in equation (3.B.4) to obtain the compensated

command [20]

      w w w nD OE LOS w
v w m na NV u R a R g     


 (III.B.2)

where the rotation matrix LOS
w R of the LOS coordinates with respect to the wind frame is

defined by the azimuth and elevation angles from the LOS vector.

C. DISADVANTAGES OF COMPENSATED PN GUIDANCE FOR BOOST
PHASE INTERCEPTION

Three disadvantages of the compensated PN for the boost phase interception of

ballistic missiles were identified by Lukacs and Prof Yakimenko. The first disadvantage

is the inherent control system time constant of the PN guidance, which utilizes current

target information in a homing guidance loop with feedback control. Such control loops

will inevitably result in a finite time constant which can result in considerable miss

distance. The second is the disregard of the end-game environment. The PN guidance law

is focused on maintaining the LOS rate constant continuously based on current missile

24

and target parameters. However, the guidance law does not attempt to optimize missile

speed and altitude, which is critical for the endgame condition, to ensure that the missile

interceptor has sufficient acceleration left to intercept the target. Rather, PN guidance

adopts the most direct and minimum acceleration collision path with the hope that there is

little target maneuver and hence sufficient acceleration left in the interceptor for the

endgame. Lastly, the intercept geometry is not controlled for the case of PN guidance,

which is left to the relative speeds of the interceptor and target as well as the endgame

maneuvers involved Controlling the intercept geometry allows for the maximization of

kinetic energy transfer to the target, which is critical for boost phase intercept of ballistic

missile since a lightweight (very small or no warhead), high speed missile with sufficient

range (most of the weight goes to the fuel) is required.

D. ADVANTAGES OF TRAJECTORY SHAPING GUIDANCE

In TS guidance, the derivation of the intercept solution - the optimized interceptor

flight path, results in a set of functions, which occurs through a Cost Function and a

Penalty function, which must be minimized through multiple iterations. The three

parameters represented in the Cost Function are the length of the virtual arc (proportional

to the flight path distance), the time to intercept and the impact angle of the final intercept

(angular deviation from desired 90o impact). Each of the parameters needs to be carefully

weighted to correctly reflect the desired condition of the intercept, and affects the Cost

Function value as a whole.

The penalty function consists of the maximum acceleration in the y- and z-

directions. They represent the ‘penalty’ to pay when certain physical limitations are

reached or violated. The penalty function has been set to the certain values, which are

dependent on speed and altitude of the interceptor, to represent the physical limits beyond

which the intercept solution will not be feasible.

The flight path optimization is done by solving a non-linear programming

problem numerically real-time and once the minimum function is obtained, the algorithm

will return the required control time history to the missile guidance system, which can

then execute the commands and fly the derived flight path. Since the missile system can

be programmed with sufficient data to compensate for its control system time constant,

25

the system lag can be effectively negated, thus eliminating a source of error. The

guidance system can be updated every few seconds to increase the accuracy of the

intercept.

The main advantages of this guidance are three-fold—(1) the relatively short

computation time to iterate and converge to an optimized solution, (2) the cost and

penalty functions are scalable as desired to fit the mission profile and (3) elimination of

the control system time constant. For a boost phase intercept mission, the TS guidance is

able to address the disadvantages of the computed PN guidance and offers greater

flexibility in being able to ‘customize’ the guidance to improve its performance to meet

the different operational demands.

26

THIS PAGE INTENTIONALLY LEFT BLANK

27

IV. INDUCED DRAG MODEL

A. AERODYNAMIC DRAG

The modeling of aerodynamic forces acting on a missile is a necessary step in the

simulation of the missile interception of an aerial target. Drag, which represents the total

sum of forces that opposes the thrust provided by the missile propulsion system, is a

‘major design parameter in satisfying the flight range requirement of tactical missiles’

[22]. This is especially so for supersonic missile. It is part of the guidance algorithm to

incorporate a drag model to account for the effect of drag on the missile, which affect

flight performance in all phases. A suitable drag model will enhance the accuracy of the

simulation result and help to provide a more realistic prediction of the flight characteristic

and performance.

B. COMPONENTS OF DRAG

In the earth atmosphere, any flying object will experience drag. It is the force that

opposes thrust (or the forward motion) of aircraft, missiles or other flying platforms. The

overall drag on a body is made up of several components—friction, base, wave (or

pressure) and induced drag. Friction drag refers to the drag generated by the skin friction

between tangential air flow and the moving body. It is primarily a function of the body

fineness ratio or length-to-diameter ratio of the missile body. Base drag accounts for the

pressure difference of air flow between the nose and the base of the body. It is

particularly significant during coast or glide phase of a missile since the propulsion

system is no longer generating thrust. Wave drag is caused by the effect of normal

pressure of air and largely dependent on the shape of the nose. The nose fineness ratio

gives a measure of the nose shape, which affects the wave drag. A sharp nose will create

less drag than a blunt one. Last but not least is induced drag. This is the component of

drag that is ‘induced’ by the lift generated for level flight or climb. It is directly

proportional to the lift. Hence induced drag is present in all flying platform as long as lift

is generated by the control surfaces and in some condition, is a key contributor to the

overall drag.

28

In mathematical terms, drag is a function of the drag coefficient, dynamic

pressure and reference area, given by this equation

 (IV.B.1)

The drag coefficient, CD is usually derived from empirical equation as a function

of the speed of sound or Mach Number (M) in the operating regime, the angle of attack,

α, which is the angle of inclination between the missile body axis and its velocity vector.

In the case of a missile, the reference area is commonly taken as the cross-sectional area.

The atmospheric dynamic pressure, q is given by

 (IV.B.1)

where ρ is the density of air and V is the speed of the missile.

C. INDUCED DRAG POLAR

As briefly described in Chapter 2, for the new TS guidance, a standard drag model

was used whereby the equation (IV.B.1) was used to calculate the drag. Noticed it was

mentioned that CD is usually obtained empirically and different missile design is likely to

have different drag characteristics. The accuracy of the drag prediction can be enhanced

with the use of an induced drag model. This model predicts drag by involving the lift

coefficient, CL which describes the lift generated by the missile. The lift force, L is

normal to the missile velocity vector and hence also normal to drag, D (which is opposite

to the velocity vector). The lift and drag coefficient can be expressed as

 (IV.C.1)

And

 (IV.C.2)

Both coefficients can be assumed to be functions of the following parameters:

29

CL, CD = f (Mach number, angel of attack, power on/off, shape) [20]

The Mach number can have a great effect on the coefficients, especially in the

transonic and supersonic regime. Of note, at the transonic regime, there is a sudden steep

rise in drag before the speed crosses the sonic line, a phenomenon commonly known as

transonic drag rise (shown in Figure 19). The main effect, however, is caused by the

angle of attack. A slight change can result in significant change in lift coefficient.

Figure 20. Transonic Drag Rise

When the lift and drag coefficient are plotted against each other, a near parabolic

curve emerges, for any given Mach number. The relationship can be expressed as:

 CD = CD0 + k(CL –CL0)
2 (IV.C.3)

Graphically, the plot is shown in Figure 19 and is known as the parabolic drag

polar:

Figure 21. Parabolic Drag Polar for Asymmetric Body

CL

CD CD,0

CL,0

CL

Mach Number.1

Transonic Drag

30

In the drag polar expression, CD0 is the zero-lift drag coefficient, a term that

accounts for the other drag components when lift is zero while CL0 represents the lift

coefficient at the lowest drag. The coefficient k is referred to as the induced drag

coefficient.

If minimum drag occurs at zero lift, then CL0 is zero and the parabola is

symmetrical about the CD axis and centered at CL0 = 0. This case is representative of a

missile, which is axis-symmetric in nature. The different points on the drag polar

represent the different angles of attack, which give rise to different lift and drag

coefficient. The parabolic drag polar of a missile is as shown in Figure 20:

Figure 22. Parabolic Drag Polar for Symmetric Body

In order to implement the induced drag model in the algorithm to calculate drag

(D), the set of CL-CD data for the interceptor and target at various Mach number was

obtained from open sources and set up in the form of a look-up table. The data is then

curve fitted using a polynomial (parabolic) function. A plot of the family of curves for

different Mach number using Excel plot is shown in Figure 21:

CL

CDCD,0

31

Figure 23. Parabolic Drag Polar for Different Mach Number (Symmetric Body)

The values of CD0 and k can be derived from the coefficient of the polynomial

function. These values can be substituted into equation (IV.C.3). Since CL0 is zero for an

axis-symmetric missile, the only outstanding variable that has to be computed is the lift

coefficient, CL. For a particular iteration, CL can be expressed as a function of load factor,

nz. The load factor of a missile is defined as:

 (IV.C.4)

Where L is the lift and W is the weight of the missile. From equation (IV.C.1), we

can express L in terms of CL:

 L = CLqSref (IV.C.5)

Therefore, substituting equations (IV.C.5) into (IV.C.4), CL can be computed:

 (IV.C.6)

The overall drag coefficient can then be calculated using equation (IV.C.3), with

values of CD0, k and CL.

A MATLAB program was developed to implement the induced drag model in the

TS guidance algorithm. The code is appended in Appendix C. Minor modifications have

32

to be made in the other sub-routines in order to integrate the new drag model into the

algorithm. It is intended to replace the generic drag model currently. Though the new

model has been integrated and initially tested to be working, results has not been

consistent. Further testing using the new code and more simulation scenario to fine-tune

the program can be conducted in future studies.

33

V. RESULTS AND DISCUSSIONS

A total of 270 simulations were conducted in this trade-off study. The main

objectives of the simulation study are: (1) to verify that the TS guidance can be used in a

hit-to-kill interceptor missile to effectively engage a ballistic missile in the boost phase,

(2) to predict the region of the interceptor launch position in relations to the ballistic

missile launch point which can result in a feasible intercept solution and (3) the impact on

the time-to-intercept, altitude and impact angle deviation by varying the intercept

geometry coefficient, WIA of the cost function. In this study, simulations were run for

various interceptor missile (simulated by the surface-launch SM-6 missile) launch

positions, for different northing and easting against a ballistic missile (simulated by the

TPD-2 ICBM) launched from a fixed site (arbitrarily fixed at point [0,0,Re] in the earth

coordinate system, whereby Re is the radius of the earth). The ballistic missile is

launched towards a target in the north direction.

A. FEASIBILITY OF THE TRAJECTORY SHAPING GUIDANCE

The simulation results showed that the trajectory guidance algorithm worked well

for the intercept scenario ran and are within expectation. The guidance provides feasible

solutions for the interception of the TPD-2 ballistic missile by the surface launched SM-6

missile. Out of the 270 simulation runs, successful intercept was achieved for 180 runs.

The remaining ‘non-feasible’ intercepts were due to the inability of the guidance

algorithm to converge to an optimized problem within the maximum number of iterations

allowed. The maximum iterations condition was set to act as the upper bound and ‘time-

out’ condition, reflection the real world situation whereby the intercept scenario does not

offer a solution fast enough to ensure a successful intercept. This is realistic as the

interceptor missile has to compute the optimized flight path after launch and be guided to

the predicted intercept point within a very small time window. Such scenario occurs

when the interceptor system is ‘out of range’ or within the ‘blind range’ to effectively

intercept the ballistic missile within the timeframe of 60 to 180 seconds after launch.

Table 22 to 24 presents a summary of simulation results, showing the number of

iterations the algorithm takes to find the optimized intercept flight path for values of WIA

34

set to 0, 100 and 1000 respectively. The region in green represents feasible intercepts

predicted by the TS algorithm and the numbers refers to the number of iterations required

to find the optimized intercept flight path. The letter ‘EX’ in the red region represented

the non-feasible region whereby there is no feasible intercept solution if the interceptor

missile is launched from those positions.

 Westing, km

 140 120 100 80 60 40 20 0
 140 EX EX EX EX 38 58 40 47
 120 EX EX 64 55 40 36 42 30

100 EX EX 44 51 53 40 32 37
80 EX EX 43 41 37 26 32 26
60 EX 45 40 40 26 24 13 12
40 EX 40 33 32 21 22 10 EX
20 EX 40 52 26 27 12 EX EX

0 EX 57 28 40 16 12 EX EX
-20 EX EX 54 27 29 21 21 12
-40 EX EX 79 50 41 30 22 29

N
or

th
in

g,
 k

m

-60 EX EX EX 57 40 39 32 40
 -80 EX EX EX EX EX 44 54 41

Table 4. No of Iterations Required for Feasible Interceptor Solution (WIA = 0)

 Westing, km

 100 80 60 40 20 0
100 44 51 53 40 32 37

80 43 41 37 26 32 26
60 40 40 26 24 13 12
40 33 32 21 22 10 Ex
20 52 26 27 12 Ex Ex

0 28 40 16 12 Ex Ex
-20 54 27 29 21 21 12
-40 79 50 41 30 12 29

N
or

th
in

g,
 k

m

-60 Ex 57 40 39 32 40

Table 5. No of Iterations Required for Feasible Interceptor Solution (WIA = 100)

35

Westing, km

 140 120 100 80 60 40 20 0
200 EX EX EX EX EX EX EX EX
180 EX EX EX EX EX EX EX EX
160 EX EX EX EX EX EX 90 56
140 EX EX EX EX 151 165 111 63
120 EX EX 64 95 88 120 127 58
100 EX EX 123 112 121 182 104 54
80 EX EX 128 158 162 150 102 100
60 EX 114 117 105 115 90 95 92
40 EX 105 110 113 103 118 95 EX
20 EX 87 97 81 88 98 EX EX
0 EX 56 74 81 79 81 EX EX

-20 EX EX 67 96 110 132 107 12
-40 EX EX EX 79 106 132 97 26
-60 EX EX EX 84 123 198 32 40
-80 EX EX EX EX EX EX EX EX

N
or

th
in

g,
 k

m

-100 EX EX EX EX EX EX EX EX

Table 6. No of Iterations Required for Feasible Interceptor Solution (WIA = 1000)

The results obtained successfully verified that the TS guidance algorithm does

provide feasible solution to the boost phase intercept problem. The new guidance is

suitable for scenario involving a high speed hit-to-kill missile interceptor and a fixed

trajectory ballistic missile target. By comparing the results for the different intercept

geometry coefficient values, it is observed that the number of iterations is increased

across the board when WIA is increased from 0 to 1000. This means that when a higher

weightage is placed on intercept geometry in the intercept solution, it increases the

computing resources required and the optimization process takes a longer time to

converge.

B. REGION OF POSSIBLE DEPLOYMENT POSITION OF THE
INTERCEPTOR MISSILE

The simulation study was able to provide a mapping of the feasible intercept

region, in terms of the interceptor missile launch position with respect to that of the

ballistic missile. As the scenario is symmetrical about the north-south direction, only half

of the 360-degree coverage needs to be tested. The other half is identical and a mirror

image of the results obtained. The simulation results obtained and plot is appended in

Appendix 1. Figure 22 shows the feasible intercept region in green and non-feasible

36

region in red, for the scenario tested. The mapping was done by running simulations and

collecting intercept data at intervals of 20 km in the northing and easting direction.

Figure 24. Region of Interceptor Position for Interception of Ballistic Missile

It should be noted that the shape of the boundary has no special significance

except for the fact it is purely a 2-D plotting limitation of the software used. A smooth

curve should be the correct representation for the boundary of the respective regions.

From the mapping, several interesting observations were noted. As expected, the plot

shows an off-set in the feasible intercept region with respect to the ballistic missile launch

point. This represents a distinct difference in the intercept range between front- or rear-

quarter engagement scenarios. One would expect the rear-sector engagement, represented

- Ballistic Missile Launch Direction - Ballistic Missile Launch Point

37

by the intercept launch points south of ballistic missile launch point at [0,0], to have a

feasible region with shorter ranges. This is consistent with a typical ‘tail-chase’ intercept

scenario, which requires the interceptor to be closer to the target. The front sector

engagement is characterized by longer ranges as depicted by the larger area in the plot.

There is a central non-feasible region (in red) and for near ranges close to the

ballistic missile launch point. This indicated that certain aerodynamic limits were

exceeded, like the g- and lateral acceleration limits, which resulted in a high penalty

function value and divergence during the optimization process. The latter represents some

kind of ‘blind-range’ whereby intercept is not feasible due to the target being too close

for the interceptor to effectively maneuver and to achieve an intercept.

The usefulness of mapping the region of feasible intercept is that it provides

critical information for the operational planners on the possible region to deploy an

interceptor system (using the TS guidance) given a ballistic missile threat. The creation of

such plots can be automated and done in a short time using computer program. The input

requirements are the specifications of the interceptor missile and intelligence on the

specifications/characteristics of the target missile. The accuracy of such prediction

software would depend on the number of simulation run (proportional to the ‘resolution’

or distance interval required) and accuracy of the input data and model used. There is

scope to develop a computer program to generate intercept region plots for operational

planning purposes in future studies.

C. EFFECT OF VARYING THE INTERCEPT GEOMETRY COEFFICIENT

One of the main objectives of the trajectory-shaping guidance is to effect

maximum transfer of kinetic energy from the interceptor missile to the target missile in a

hit-to-kill interception scenario. This can be achieved when the impact angle onto the

target missile is at a right angle to the ballistic missile body. The TS guidance algorithm

allows the missile designer to adjust the weightage placed on the intercept geometry,

amongst other critical parameters, by varying the value of WIA, which is to be optimized

(minimized). The trade-off study examines the effect on time-to-go, intercept altitude and

impact angle deviation due to changes in WIA.

38

In this study, simulations were run for three values of WIA, namely 0, 100 and

1000. By having WIA = 0 implies that the optimized flight path does not take into account

the end-game intercept geometry. In the case of WIA = 1000, a higher weightage is placed

on impact angle at intercept and the flight path will be optimized to achieve an impact

angle as close to 90 degrees as possible. When a higher ‘premium’ is placed on the

intercept geometry, the algorithm will attempt it at the expense of other performance

parameter. Here, there is always some form of trade-off that a missile designer has to be

conscious of.

A comparison of the time-to-go or time-to-intercept, intercept altitude and impact

angle deviation for different values of WIA provides valuable insights into the effects of

WIA on the missile performance under the same intercept scenario. Table 7 presents a

summary of the comparison results.

Time‐to‐Intercept (s) Intercept Altitude (km) Impact Angle Dev (o)

WIA Min Max Ave Min Max Ave Min Max Ave

0 17.6 61.0 38.67 22.3 60.0 38.77 2.4 30.3 18.45

100 17.6 61.0 38.48 22.3 60.0 38.77 2.4 30.3 18.45

1000 17.8 60.2 39.00 22.4 59.1 38.94 0.0 30.0 10.02

Table 7. Time-To-Intercept, Altitude And Impact Angle Deviation
For Different Intercept Geometry Coefficient, WIA

Generally, it can be seen that there is no significant different between the results

obtained for WIA being set at 0 and 100, for the time-to-intercept, intercept altitude and

impact angle deviation. However, some different is observed when the weightage

coefficient is increased by a factor of 1000. The most significant difference is observed in

the impact angle deviation. With a high weightage placed on intercept geometry (WIA =

1000), the minimum impact angle deviation is 0, and the average over all the feasible

intercepts reduces from about 18 o to 10o. This is within expectation and verified that the

algorithm indeed attempted to minimize the impact angle deviation when the WIA is

increased. Another important observation is that by enhancing the intercept geometry

weightage, it does not affect time-to-intercept and intercept altitude. By correlating the

observations made in the previous section, it can be seen that when WIA is increased, the

39

number of iterations needed for convergence also goes up. However, the overall time

taken for the intercept generally does not increase significantly. This seems possible if

there is some trade-off or interaction with the other parameter(s) which is not investigated

in this study. It can also be seen that the area of intercept decreases when WIA is changed

from 0 to 1000. A possible reason is that the larger number of iterations required for

higher intercept geometry coefficient may have resulted in the further range intercepts

exceeding the maximum iteration limit imposed by the guidance. This will cause the

longer range region to be marked as non-feasible. However, this clearly shows the

‘penalty’ for imposing a placing a higher weightage on intercept geometry. Figure 23

provides an illustration of the typical intercept geometry at WIA = 1000. It can be seen

that the flight path is optimized for a near 90o impact to the ballistic missile trajectory.

Figure 25. Typical Intercept Geometry

It can be expected that when the weightage for intercept geometry is increased,

there is greater constraints imposed on the interceptor system to optimized impact angle

amongst other factors. This will affect missile performance in terms of time-to-go and

40

higher intercept altitude. A quick sensitivity study by using WIA values of 0, 100 and

1000 and computing the statistical average of all feasible intercept for time-to-go,

intercept altitude and impact angle deviation in the study revealed that increasing the

weightage by a factor of 100 does not result in significant changes in the missile

performance. At a factor of 1000, the effect on the missile flight parameters begins to be

more observable. More simulations can be conducted in future studies for higher values

of the WIA that will cause significant effect on missile performance. Some form of scaling

factor can be obtained, from which a missile designer can select suitable values WIA to

use for different missions.

There is hence a trade-off between the weightage coefficient and other

performance parameters of the interceptor missile. From the trade-off study, it was

demonstrated that the TS guidance allows the missile designer the flexibility to adjust the

weightage of the critical parameters in order to optimize the intercept path. With the

insight obtained from the study, the effect of the weightage coefficient on missile

performance is known. There is a need to balance the trade-off between the weightage

placed on the different critical parameters. In the particular case of intercept geometry,

the weightage coefficient (WIA) must be carefully selected to optimize missile

performance for a particular mission or scenario. The same consideration can be

translated to the other critical parameters. Again, a computer program can be developed

to aid missile designer in selecting a suitable weightage or cost function coefficients for

different mission requirement and operational scenario. This will be very useful if TS

guidance in implemented in intercept missiles and offers greater advantage over other

guidance laws as one that allows ‘customization’ for different mission requirements

simply using software changes.

D. INTERCEPT GEOMETRY TRENDS

The simulation study also provides good data to perform simple trending analysis. Useful

charts can be generated to provide trending information. An example is the impact angle

deviation data derived from the simulation. It provides greater insights into how the

intercept geometry will change with respect the ballistic missile trajectory azimuth angle,

41

θBM, with respect to the interceptor launch site. The angle θBM, is defined as the angle

between the trajectory plane of the ballistic missile and the direction from the interceptor

launch point to the detected ballistic missile position, as shown in Figure 26.

Figure 26. Illustration of Angle between interceptor Launch Position and
Ballistic Missile Trajectory Plane

Figure 27 shows the plot of impact angle deviation for interceptors launched from

the various positions.

Figure 27. Effect of Interceptor Launch Direction on Intercept Geometry

Ballistic
Missile
Launch Point

Interceptor
Missile Launch

Point

θBM

Ballistic
Missile Launch
Direction

Trajectory

42

It can be observed from the plot that interceptors launched normal to the ballistic

missile trajectory plane (θBM = 90o) usually have small impact angle deviation (very close

to 0o) or impact the ballistic missile at close to 90o. The impact angle deviation increases

when the interceptor flight path becomes more oblique to the ballistic missile trajectory

plane (that is, θBM becomes smaller). For example, the impact angle deviation is larger,

when the interceptor is fired from [80 km N, 0 km E], as compared to an interceptor

missile being launched from [0 km N, -50km E]

The largest impact angle deviation occurs when the interceptor missile is in the

front-sector of the ballistic missile. This can be explained from the fact that the missile

does not have sufficient time to effectively ‘shape’ its flight path for a 90o impact on the

ballistic missile, compared to the cases where the interceptor is closing-in from the side

(normal to the ballistic missile trajectory plane). By plotting the results for the other

parameters and analyzing them in future studies, other useful insight into the interceptor

missile performance can be deduced. This will be helpful to missile designers as well as

operational planners to optimize the potential of the TS guidance for possible anti-

ballistic missile defense missions.

43

VI. CONCLUSIONS

The simulation study verified that the TS guidance provides feasible solutions to

the boost phase intercept problem involving the interception of a fixed-trajectory ballistic

missile by a surface-launched interceptor missile. For the particular scenario used in the

study, it was shown that if an interceptor system using the TS guidance can be deployed

within 30 to 60 km (for front sector intercept) and 20 – 50 km for (rear-sector intercept),

it is possible to intercept the ballistic missile effectively during the boost phase. The

results also shows that the new guidance allows missile designer to ‘customize’ the

guidance algorithm for specific mission by changing the ‘weights’ of some critical

parameters However, there is a trade-off between the each of the weightage coefficient

and missile performance. By enhancing the weightage on intercept geometry, there is no

change in the time-to-intercept or intercept altitude. However, the region for the feasible

interceptor launch position around the ballistic missile launch point has reduced. Hence,

the weightage coefficient will have to be carefully chosen to ensure that there is a balance

of benefit and penalty with respect to specific missions. This aspect of ‘customization’

represents a clear advantage of the TS guidance over other guidance law. The new

guidance algorithm can be further enhanced and fine-tuned. Further research can include

conducting simulation study using a 6 DoF model of the TS guidance, combining

guidance solution with on-board navigation solution, testing the complete guidance,

navigation and control solutions and developing a computer program as a design tool to

perform trade-off study and select weightage coefficients for different mission

requirements. The new TS guidance holds promise to be a feasible and implementable

solution to the boost phase ballistic missile intercept problem that will become more

prominent in the coming years.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

APPENDIX A: TABLES AND PLOTS OF SIMULATION RESULTS

NO OF ITERATIONS WIA = 0

140 120 100 80 60 40 20 0
140 EX EX EX EX 38 58 40 47
120 EX EX 64 55 40 36 42 30
100 EX EX 44 51 53 40 32 37
80 EX EX 43 41 37 26 32 26
60 EX 45 40 40 26 24 13 12
40 EX 40 33 32 21 22 10 EX
20 EX 40 52 26 27 12 EX EX
0 EX 57 28 40 16 12 EX EX

-20 EX EX 54 27 29 21 21 12
-40 EX EX 79 50 41 30 22 29
-60 EX EX EX 57 40 39 32 40
-80 EX EX EX EX EX 44 54 41

 Ex - Exceed Max No. of Iterations - Non-feasible Intercept

Westing, km

N
or

th
in

g,
 k

m

140

120

100

80

60

40

20

0

-20

-40

-60

-80

Northing, km

100-110

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

46

TIME-TO-GO WIA = 0

140 120 100 80 60 40 20
140 100 100 100 100 57 53.9 52.9
120 100 100 60.9 55.2 51.3 47.1 44.8
100 100 100 56.4 50.3 44.5 40.5 37.8
80 100 100 53.1 45.9 39.5 34.2 30.8
60 100 59 50.7 41.07 34.5 28.4 23.9
40 100 58 48.2 39.9 31.3 23.8 17.6
20 100 59 48.3 39.1 30.3 21.4 0
0 100 60 50.7 41 31.8 23.1 0

-20 100 100 54.3 45 36.8 28.8 22.5
-40 100 100 61 51.9 43.5 37 32.3
-60 100 100 100 60.2 52.7 47.6 43.6
-80 100 100 100 100 100 59.2 55.8

 Note : Value of 0 and 100 Assigned for Non-Feasible Intercept

N
or

th
in

g,
 k

m

Westing, km

140

120

100

80

60

40

20

0

-20

-40

-60

-80

140 120 100 80 60 40 20 0

Northing, km

Westing, km

47

IMPACT ANGLE WIA = 0

140 120 100 80 60 40 20 0
140 20 21 22.8 24.6 26.6 27.9 28.5 28.9
120 18 20 20.9 23.6 25.9 27.8 28.5 29.1
100 16 18 19.8 21.6 24.3 27.3 28.8 29.4
80 13 15 16.9 19.4 23.4 26.5 28.9 29.7
60 10 11 13.5 16 18.5 24.2 27.8 30.1
40 6.5 7.5 9.5 11.4 13.4 17.9 26.5 Ex
20 2.6 2.9 3.8 3.7 5.7 8.9 Ex Ex
0 1.4 3.2 2.4 2.5 3 4.7 Ex Ex

-20 5.4 6.3 7.5 10 11.9 16.4 24.1 30.3
-40 9 10 12.6 14.6 18 22.4 27.5 29.7
-60 12 14 16 17.9 21.4 24.9 27.9 29.2
-80 15 17 18.5 20.9 23.5 26.1 28.1 28.9

Ex - Exceed Max No. of Iterations - Non-feasible Intercept

Westing, km

N
or

th
in

g,
 k

m

140

120

100

80

60

40

20

0

-20

-40

-60

-80

140 120 100 80 60 40 20 0

Northing, km

Westing, km

25-30

20-25

15-20

10-15

5-10

0-5

48

ALTITUDE WIA = 0

140 120 100 80 60 40 20 0
140 100 100 100 100 55.7 52.4 50.1 49.7
120 100 100 59.9 53.9 49.7 45.8 43.6 43
100 100 100 55 48.9 43.3 39.6 37.2 36.6
80 100 100 51.5 44.7 39.6 34.4 31.6 30.7
60 100 58 49.3 40.8 34.5 29.8 26.5 25.2
40 100 56 46.8 39.1 32.6 26.4 22.3 Ex
20 100 57 46.8 38.4 31.2 24.8 Ex Ex
0 100 58 49.3 40.1 32.4 25.9 Ex Ex

-20 100 100 52.7 43.7 36.3 30 25.5 23.6
-40 100 100 60 50.5 42.4 36.7 32.8 31.5
-60 100 100 100 59.1 51.2 46.1 42.5 40.9
-80 100 100 100 100 100 58.1 54.5 52

100 or Ex - Exceed Max No. of Iterations - Non-feasible Intercept

Westing, km
N

or
th

in
g,

 k
m

140

120

100

80

60

40

20

0

-20

-40

-60

-80

140 120 100 80 60 40 20 0

Northing, km

Westing, km

100-110

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

49

NO OF ITERATIONS WIA = 100

100 80 60 40 20 0
100 44 51 53 40 32 37
80 43 41 37 26 32 26
60 40 40 26 24 13 12
40 33 32 21 22 10 Ex
20 52 26 27 12 Ex Ex
0 28 40 16 12 Ex Ex

-20 54 27 29 21 21 12
-40 79 50 41 30 12 29
-60 Ex 57 40 39 32 40

EX - No. of Iterations Exceeded. Represents Non-Feasible Region

Westing, km

N
or

th
in

g,
 k

m

100

80

60

40

20

0

-20

-40

-60

100 80 60 40 20 0

Northing, km

Westing, km

60-80

40-60

20-40

0-20

50

TIME-TO-GO WIA = 100

100 80 60 40 20 0
100 56.4 50.3 44.5 40.5 37.8 36.9
80 53.1 45.9 39.5 34.2 30.8 29.7
60 50.7 41.7 34.5 28.4 23.9 22.1
40 48.2 39.9 31.3 23.8 17.6 ex
20 48.3 39.1 30.3 21.4 ex ex
0 50.7 41 31.8 23.1 ex ex

-20 54.3 45 36.8 28.8 22.5 19.8
-40 61 51.9 43.5 37 32.3 30.7
-60 ex 60.2 52.7 47.6 43.6 41.9

EX - Represents Non-Feasible Region

N
or

th
in

g,
 k

m

Westing, km

100

80

60

40

20

0

-20

-40

-60

100 80 60 40 20 0

Northing, km

Westing, km

50-60

40-50

30-40

20-30

10-20

0-10

51

IMPACT ANGLE DEF WIA = 100

100 80 60 40 20 0
100 19.8 21.6 24.3 27.3 28.8 29.4
80 16.9 19.4 23.4 26.5 28.9 29.7
60 13.5 16 18.5 24.2 27.8 30.1
40 9.5 11.4 13.4 17.9 26.5 ex
20 3.8 3.7 5.7 8.9 ex ex
0 2.4 2.5 3 4.7 ex ex

-20 7.5 10 11.9 16.4 24.1 30.3
-40 12.6 14.6 18 22.4 27.5 29.7
-60 EX 17.9 21.4 24.9 27.9 29.2

EX - Represents Non-Feasible Region

Westing, km
N

or
th

in
g,

 k
m

100

80

60

40

20

0

-20

-40

-60

100 80 60 40 20 0

Northing, km

Westing, km

25-30

20-25

15-20

10-15

5-10

0-5

52

INTERCEPT ALTITUDE WIA = 100

100 80 60 40 20 0
100 55 48.9 43.3 39.6 37.2 36.6
80 51.5 44.7 39.6 34.4 31.6 30.7
60 49.3 40.8 34.5 29.8 26.5 25.2
40 46.8 39.1 32.6 26.4 22.3 ex
20 46.8 38.4 31.2 24.8 ex ex
0 49.3 40.1 32.4 25.9 ex ex

-20 52.7 43.7 36.3 30 25.5 23.6
-40 60 50.5 42.4 36.7 32.8 31.5
-60 61 59.1 51.2 46.1 42.5 40.9

EX - Represents Non-Feasible Region

Westing, km
N

or
th

in
g,

 k
m

100

80

60

40

20

0

-20

-40

-60

100 80 60 40 20 0

Northing, km

Westing, km

70-75
65-70
60-65
55-60
50-55
45-50
40-45
35-40
30-35
25-30
20-25
15-20

53

NO. OF ITERATIONS WIA = 1000

140 120 100 80 60 40 20 0
200 EX EX EX EX EX EX EX EX
180 EX EX EX EX EX EX EX EX
160 EX EX EX EX EX EX 90 56
140 EX EX EX EX 151 165 111 63
120 EX EX 64 95 88 120 127 58
100 EX EX 123 112 121 182 104 54
80 EX EX 128 158 162 150 102 100
60 EX 114 117 105 115 90 95 92
40 EX 105 110 113 103 118 95 EX
20 EX 87 97 81 88 98 EX EX
0 EX 56 74 81 79 81 EX EX

-20 EX EX 67 96 110 132 107 12
-40 EX EX EX 79 106 132 97 26
-60 EX EX EX 84 123 198 32 40
-80 EX EX EX EX EX EX EX EX
-100 EX EX EX EX EX EX EX EX

EX - No. of Iteration Exceeded. Represents Non-Feasible Region

N
or

th
in

g,
 k

m

Westing, km

200

180

160

140

120

100

80

60

40

20

0

-20

-40

-60

-80

-100

140 120 100 80 60 40 20 0

Northing, km

Westing, km

210-220

200-210

190-200

180-190

170-180

160-170

150-160

140-150

130-140

120-130

110-120

100-110

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

54

TIME-TO-GO WIA = 1000

 140 120 100 80 60 40 20 0
200 100 100 100 100 100 100 100 100
180 100 100 100 100 100 100 100 100
160 100 100 100 100 100 100 60 59.3
140 100 100 100 100 58.2 55.6 53.3 51.5
120 100 100 61.2 56.6 52.1 48.3 46.9 44.7
100 100 100 57.6 51.5 47.2 42.2 39.2 37.2
80 100 100 54.2 47.8 41.3 35.7 31.8 30.4
60 100 58.7 49.8 43.1 35.8 29.6 24.6 22.7
40 100 57.4 48.3 40.1 31.4 24.2 17.8 Ex
20 100 58.4 47.9 39.0 29.8 21.4 Ex Ex
0 100 59.8 51.2 41.4 32.0 23.5 Ex Ex

-20 100 100 55.1 46.8 37.5 29.7 22.9 19.8
-40 100 100 100 53.5 45.3 38.7 33.7 30.7
-60 100 100 100 60.2 54.4 47.4 43.6 41.9
-80 100 100 100 100 100 100 100 100

-100 100 100 100 100 100 100 100 100

EX - Represents Non-Feasible Region

Westing, km

N
or

th
in

g,
 k

m

140

120

100

80

60

40

20

0

-20

-40

-80

-100

140 120 100 80 60 40 20 0

Northing, km

Westing, km

100-110

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

55

IMPACT ANGLE DEVIATION WIA = 1000

140 120 100 80 60 40 20 0
140 20 21 22.8 24.6 18.6 22 24.6 28.6
120 18 20 17.1 11.6 14.7 18 22.2 28
100 16 18 6.3 6.3 9.8 14.6 20.3 29.1
80 13 15 0 0.1 4.1 10.4 19.2 26
60 10 0.1 0.1 0 0 6.3 17.6 27
40 6.5 0 0.1 0 0 0.1 13.9 ex
20 2.6 0 0 0.1 0 0.1 ex ex
0 1.4 1.2 0 0 0.1 0.1 ex ex

-20 5.4 6.3 3.7 1.6 2.9 8.1 17.9 30
-40 9 10 11.6 8.9 9.5 13.3 19.3 29.7
-60 12 14 15 16.8 16 22.7 27.9 29.2
-80 15 17 18.5 20.9 23.5 25.2 28.1 28.9

EX - Represents Non-Feasible Region

Westing, km

N
or

th
in

g,
 k

m

140

120

100

80

60

40

20

0

-20

-40

-60

-80

140 120 100 80 60 40 20 0

Northing, km

Westing, km

25-30

20-25

15-20

10-15

5-10

0-5

56

INTERCEPT ALTITUDE WIA = 1000

140 120 100 80 60 40 20 0
160 100 100 100 100 100 100 58.9 58
140 100 100 100 100 56.9 54.3 51.9 50
120 100 100 60.2 55.2 50.6 46.9 45.5 43.5
100 100 100 56.4 49.9 45.8 41.2 38.6 36.8
80 100 100 52.7 46.3 40.4 35.5 32.4 31.3
60 100 57 48.3 41.9 35.6 30.6 27 25.7
40 100 56 46.9 39.2 32.1 26.7 22.4 ex
20 100 57 46.5 38.3 30.9 24.7 ex ex
0 100 59 49.8 40.4 32.6 26.2 ex ex

-20 100 100 53.7 45.5 37 30.8 25.8 23.6
-40 100 100 100 52 44 38 33.9 31.4
-60 100 100 100 59.1 53 46 42.5 40.9
-80 110 100 100 100 100 100 100 100

EX - Represents Non-Feasible Region

Westing, km
N

or
th

in
g,

 k
m

160

140

120

100

80

60

40

20

0

-20

-40

-60

-80

140 120 100 80 60 40 20 0

Northing, km

Westing, km

100-110

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

57

APPENDIX B: PARTICIPATION IN AIAA YOUNG
PROFESSIONAL ROCKET LAUNCH COMPETITION IN MAY 2009

INTRODUCTION

 The author participated in the AIAA Young Professional Rocket Launch

Competition in May 2009 as a member of the NPS Team (see Figure 28 for the team

photo). Team Peacock, one of the two teams from NPS, comprised eight student

members and a faculty advisor (Prof Yakimenko). The competition required its

participant to apply their knowledge to build a rocket, analyze and predict it performance

and launch it at a test site, using common rocket kits, a choice of propulsion units and a

payload provided by the organizers. The 8.5-feet long scaled model rocket was expected

to reach height in excess of 7,000 at a speed of greater than Mach 1. The rocket has to be

recovered after reaching its maximum height.

Figure 28. Team Members and Advisor with Their Rocket at the Launch Site

RELEVANCE

 The team’s participation in the competition is relevance to their course of study in

NPS in general in that it provided an excellent opportunity for the students to apply their

58

knowledge in aerodynamics, propulsion, missile design and manufacturing in analyzing a

problems and physically implementing the solutions to achieve an actual task or a

mission—in this case building the rocket and launching it. In the process, greater

experience and knowledge was gained, not only in the academic areas, but also in terms

of project management, teamwork and communication. This is a good example of the

‘hands-on’ approach towards learning and an interesting and impactful means of

education. With respect to this project, this rocket is like a scaled model of an interceptor

missile designed to intercept a ballistic missiles in the boost phase. The characteristics of

the rocket resembles that of a hit-to-kill interceptor, vis high speed, ‘light weight’

(includes only the body and fins, actuators, guidance and control), small payload (perhaps

a small KE warhead or no warhead at all) and ‘long range’ (high ratio of fuel mass to

total mass). A 2-stage rocket would bear greater resemblance to a typical missile

interceptor. The valuable experience gained provided the author greater insight and better

understanding of the fundamental issues facing the design of interceptor missiles,

particularly the aerodynamics, propulsion, stability and design trade-offs.

COMPETITION

 The judging criteria for the competition are the maximum height reached by the

rocket and the accuracy of the predicted performance versus actual performance. There is

a winner each for the highest height reached and the closest predicted-to-actual

performance category. Besides the actual launch itself, a report submitted by each team

on their analysis and work done is also assessed to determine the winner for the latter.

GOALS

 Team Peacock set itself two goals for this competition : (1) it aimed to be the

winner for the highest altitude category and (2) to build the most stable rocket in flight

and be able to recover the rocket successfully. This goal guided the team in its design and

construction of the rocket.

59

TASKS

 The team took about 4 months to build the rocket and prepare for the launch,

which was held in end May 2009. After the team was formed in Jan 09, it went straight to

work by brainstorming what are the tasks to be completed, the timeline, resources

required (including budget) and roles of individual members. Taking into account the

goals and tasks identified, allocation of tasks and a schedule broad was drafted.

The broad tasks facing the team from the start to launch were as follows:

a. Budgeting. The team worked within a budget of $1000 to purchase all the

required materials that is not provided by the organizer (only the rocket kit, propulsion

unit and the common-use payload is provided). Table 8 provides a breakdown of the

funds needed (for supplies).

Item Location Cost($) Qty Total($)

60" TAC-1 Parachute Giant Leap Rocketry 86 1 86

TAC-1 Kevlar Bag Giant Leap Rocketry 25 1 25

Tubular Kevlar Shock Cord (1/2" x 15') Giant Leap Rocketry 25 2 50

1/4" Eyelet Swivel Giant Leap Rocketry 3 4 12

AeroTech Electronic Fwd Enclosure Aerotech-Rocketry 170 1 170

Construction Materials Perfectflite.com 100 1 100

K270W(engine) Aerotech-Rocketry 150 2 300

Misc 217

TOTAL 960

Table 8. Budget for Rocket Launch Competition

b. Scheduling. An initial schedule was drafted (see Figure 30) so that members

have a good sense of the key milestones and timeline for the various preparatory

activities. The schedule was updated as project progresses to reflect the status of the

various tasks.

60

Figure 29. Timeline for the Rocket Launch Project

c. Resource Planning and Purchasing (Supply). Some of the team members

were assigned the role to plan and decide the items, the specifications and

quantities needed as well as to source and purchase the items (the actual

purchasing is done by the administrative staff)

d. Structure Design. The rocket kit is provided by the organizers. It uses the

Quasar 1/16 rocket, which comes with the nose cone, body sections, fins and also

a parachute for recovery. The team used commercial software RockSim to predict

the CG and CP calculation as well as to determine the structural dimensions for

the rocket design. Figure 31 presents the CG and CP position and the static

margin. Based on the calculation and prediction, the team decided to reduce the

length of the rocket by 14 inches as well as halved the fin area to reduce the static

margin to 2 and optimize the performance of the rocket so as to achieve the

required stability and highest altitude.

61

Figure 30. The Specifications and Dimensions of the Quasar Rocket Kit

e. Rocket Motor Selection. Two engines, both with about the same impulse,

were provided for selection. The team can choose either the engine that has higher

thrust and a shorter burn time (K800) or the other with lower thrust but longer

burn time (K270). After conducting simulation study of the predicted flight

profile, based on the rocket modified dimensions, using RockSim and a

MATLAB program written by one of the team member, it was found that the

K270 best meet our needs. The engine motor specifications are as follows:

Motor : AeroTech K270

Diameter (mm) : 54.0

Length (cm) : 57.9

Prop. Weight (g) : 1,188.0

Total Weight (g) : 2,100.

Avg. Thrust (N) : 247.6

Max. Thrust (N) : 425.7

Tot. Impulse (Ns) : 2,154.9

Burn Time (s) : 8.7

The motor performance chart for the K270 are shown in Figure 32.

62

Figure 31. The Specifications and Dimensions of the Quasar Rocket Kit

f. Analysis (Simulation and Modeling). This is one of the key components of

this rocket launch project. The team has to use various methods to analyze and

predict the flight performance/profile of the rocket to be built. The team relied on

several methods to analyze the flight performance of the rocket, including simple

hand calculations for rough prediction, using RockSim, a commercial rocket

software for amateur rocketeers and a student-developed MATLAB program

(with Simulink model) written by one of our members. The analysis and

simulation done helped the team to determine the structural modification needed,

weight and balance, CG and CP position, stability, selection of engine and the

maximum altitude prediction. Figure 33 shows the Simulink model. Comparison

of results, derived from RockSim and own MATLAB model, can be made and it

was found that they are within about 10% of each other. RockSim predicted a

higher maximum height reached of 7,000 feet, while the Simulink model

predicted 6,400 feet.

63

Figure 32. The Specifications and Dimensions of the Quasar Rocket Kit

g. Testing. Besides analysis, some of the rocket components have to be

physically tested to have a higher assurance that it worked as designed and modifications

made did not introduce problems to the design. The team tested the rocket engine at the

propulsion laboratory to match the actual performance with manufacturer specifications,

the Electronic Forward Closure (EFC) to test the trigger mechanism for the explosive

charge to deploy the parachute and the actual parachute to select the one to be used for

the rocket recovery system. During the first propulsion unit test, there was a burn-through

of the engine casing due to a wrong part provided by the manufacturer. The problem was

raised to the manufacturer and a replacement part was delivered. The discovery was an

important one as it prevented the same occurrence from happening during the actual

launch for our team as well as for other teams. The second firing was very successful and

it verified the same propulsion characteristic given by the manufacturer. The EFC test

verified that the trigger mechanism worked and would cause the separation of the rocket

body after apogee to deploy the recovery chute. The parachute testing helped the team to

64

decide using a single chute system for recovery instead of a dual-chute system. Figure 34

shows pictures of testing being conducted.

Figure 33. Team Members and Advisor with Their Rocket at the Launch Site

h. Construction. The actual construction of the rocket took about three

weeks, after all the parts and materials were delivered. For a start, a rocket stand or jig

was build to facilitate the assembling work. For this rocket, the body was made up of

several cylindrical sections of thick cardboard material and the nose cone is made of

plastic. The construction process begins with strengthening the body with layers of

epoxy. The internal compartments and fins were joined to the body using fibre-glass cloth

with epoxy and left to cure. The various structures were attached to the rocket body or

inserted inside the rocket in sections. Fixing the fins to the tail section required more

attention to ensure they are symmetrically attached. Much effort was put in to ensure the

rigidity as the fins as they would be subjected to relatively large forces in flight. The

rocket engine casing, EFC and parachute were then put inside the rocket body. Once all

the components were assembled in their sections, the three sections were then joined

65

together using internal connectors and nose cone was attached to the body. The last step

is painting the rocket to give it a distinctive color for aesthetic reasons as well as to

provide a smooth finishing to reduce skin drag. The payload would be placed inside the

rocket only on launch day. It consisted of an altimeter that would send altitude data

continuously to the ground receiver for recording purposes. Figure 37 shows some

pictures of the rocket being built at the laboratory.

Figure 34. Team Members and Advisor with Their Rocket at the Launch Site

i. Launch. The launch was the climax of the five-month effort and the team

was as prepared as it could be. It was held on 26 May 09, Saturday at Koehn Lake

Launch Site near to Mojave. On that day, there were 9 teams present with their rockets.

Team Peacock was the first team to launch. After the rocket propellant was inserted into

the casing, it was mounted onto the launch rail for the ignition. The igniter was fired by

the firer, who was positioned at the firing ‘bunker’. All other observers were herded to

the observation deck to watch the firing. At the countdown of 10, the rocket was

launched. It lifted-off vertically with a sharp ‘bang’ and within seconds, the rocket motor

accelerated the rocket to more than 3,000 ft and out of visual sight, leaving a trail of

smoke behind it. Moments later, the parachute was deployed and the rocket descended to

the ground in two parts, as expected. It landed ‘safely’ at the desert ground close to the

launch site and was retrieved by the recovery team. Figure 36 shows the launch of the

rocket.

66

Figure 35. Team Members and Advisor with Their Rocket at the Launch Site

RESULTS

The results made all the hard work pay off. Team Peacock emerged the winner of

the closest altitude prediction category. The recorded maximum altitude reached during

the actual launch was 5,700 feet. This was about 9% deviation from the predicted height

based on the team’s analysis. Figure 37 presents the results in terms of the altitude versus

time plot that was recorded by the organizer.

67

Figure 36. Official Altitude Plot for Team Peacock

LESSON LEARNED

The end result is not as important as the process of getting it. Though the team did

not expect to win and entered the competition with an altitude to experience and

understand rocket design and rocketry better, the results was nonetheless a good one for

first-timers like us. There were many lessons learnt from the success and failure of some

teams. By analyzing and discussing the causes of failure with the other teams, it provided

much insight into the considerations that went into the design and some of the cardinal

errors that were made. Using the example of a rocket that ‘exploded’ mid-air, their over-

ambitious fin design, which reduced too much of the control surface for normal flight and

stability, it provided a good lesson for our team as well in our future design. In future

participation, more prediction tools and program should be made available for team

members to analysis the aerodynamics and flight performance. The project may be part of

the NPS missile design course, culminating in the actual launch of the rocket; all these

within 2 quarters, It can help to reinforce some of the fundamental principles of

aerodynamics and rocket design. In summary, this was a worthwhile project that

68

combined learning, application of knowledge and great fun into one, and certainly helped

in providing a better grasp of fundamentals in missile design.

69

APPENDIX C: INDUCED DRAG PROGRAMME DEVELOPED

1. ZLDragC_mod.m

function [CD] = ZLDragC_mod(M,load_f,mass,rho,vel,Sref)
% Written by LTC Weng Wai Leong, Naval Postgraduate School, Dec 2009

% This function interpolates the known drag polars for various Mach
number to determine drag coefficient. Input variables are Mach number,
% load factor, mass, density, velocity, referenece area the interceptor
or ballistic missile (BM) to be utilized
% in the BMFlight3.m, SMTrajectory and SMFlight3.m programs (written by
LT Lukacs) for the calculation of forces acting on the
interceptor/Ballistic Missile.

% The CL and Cd data are input in Excel files. Data obtained from Prof
Yakimenko

% Variable List
% M = mach number of interceptor/BM
% load_f= load factor in the normal plane
% mass = mass of interceptor/BM
% rho = density of air
% vel = velocity of interceptor/BM
% Sref = reference area of interceptor/BM

global CL_data Cd_data

Cd_curve = interp1(Cd_data(:,1),Cd_data(:,2:11),M,'nearest','extrap');
%interpolate the Cd data in the array for the new Mach number

CL_curve = interp1(CL_data(:,1),CL_data(:,2:11),M,'nearest','extrap');
%interpolate the CL data in the array for the new Mach number

p = polyfit(CL_curve,Cd_curve,2); % generate a new drag polar (CL_Cd
curve) for new Mach number using 2nd order polynominal function

k=p(1);

CL0=0;

CD0=p(3)-k*CL0^2;

CL=(2*load_f*mass*9.81)/(rho*vel^2*Sref);

if abs(CL)>5, CL=5*sign(CL); end

CD = CD0 + k*(CL-CL0)^2;
return

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX D: MODELING PROGRAM CODE

A. 3DOF INTERCEPTOR

1. SMFlight3.m

%% This is the Main M-File for the simulation. Run this file with all
the required function files in the same current directory.

% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006
% Corrected by O.Yakimenko, August 2007, November 2009

% This script develops and tracks the flight path of the interceptor
% missile. For the first ten seconds it integrates a series of
% acceleration commands to simulate a vertical launch and tip over.
Upon
% activation of the guidance law, it sends the known values to the
guidance
% law and receives back the future time history of the optimal flight
path.
% This script then implements that optimal path. It updates the final
% conditions and recalculates the optimal flight path at an interval of
10
% seconds. The script calls BRFlight3, SMParams3.m, SMDrag.m,STatmos.m,
% and SMGuidance.m

%% List of variables
% Acc_SM = index-based vector of acceleration values
% AllSM = index based vector of all interceptor values
% alt = altitude
% CD = drag coefficient
% count = counting variable to determine guidance law update
interval
% dist = cumulative distance travelled
% Drag = total drag force
% Forces_SM = index-based vector of force values
% g = gravitational force, based on WGS-84 value of
gravitational
% attraction and altitude
% m_i = interceptor mass
% Model_SM = index-based vector of internal values
% MV = interceptor speed in Mach (relative to local speed of
sound)
% N1,N2 = variables used to ensure optimal vectors are the same
length
% num_SM = number of interations conducted (used for plotting)
% nx,ny,nz = axial acceleration command, body frame x, y and z,
respectively
% nx(y,z)_Op = index based vector of the optimal flight path values
% path = returned time history of the optimal path
% Pos_SM = index-based vector of position values
% press = local atmospheric pressure

72

% psi = heading angle
% psidot = rate of change of heading angle
% psidot_Op = index based vector of the optimal flight path values
% px,py,pz = x, y and z components of position
% px(y,z)_Op = index based vector of the optimal flight path values
% py_Op = index based vector of the optimal flight path values
% pz_Op = index based vector of the optimal flight path values
% q = counting variable (used in another program)
% Re = WGS-84 Earth's radius
% ro = local atmospheric density
% Sref = planar reference area (for drag calculations)
% state = the state of the interceptor
% t = global time
% target = the state of the rocket
% temp = local atmospheric temperature
% tgo = time to go to intercept
% th = flight path angle
% th_Op = index based vector of the optimal flight path values
% thdot = rate of change of flight path angle
% thdot_Op = index based vector of the optimal flight path values
% Thrust = thrust generated by interceptor motor
% time_Op = index based vector of the optimal flight path values
% time_SM = index-based vector of time values
% update = number of updates to the guidance law conducted
% V = velocity of the interceptor
% V_Op = index based vector of the optimal flight path values
% Vdot = rate of change of the velocity
% Vdot_Op = index based vector of the optimal flight path values
% Vel_SM = index-based vector of velocity values
% w = number of 0.5s steps between the lunches of traget and
interceptor

close all, clear all, clc

global Re alphag path % shared by SMFlight3, SMGuidance &
SMTrajectory
global q states % shared by SMFlight3 & SMGuidance
global Pos_BR Pos_SM Npol Npt kpolar weight90 % ... by SMFlight3 &
SMTrajectory

%% Computing the flight path of a Ballistic Missile in a gravity turn
BRFlight3

%% Initializing variables for an Interceptor
t=0; dt=0.5; q=0; w=120; % 60 sec detection time
Nupd=30; count=Nupd; update=0;
Npt=100; % the number of points the optimal trajectory is
computed at
Npol=8; % number of coefficients in approximating
polynomials
kpolar=0;

prompt = {'Northing wrt to BM launch point, km',...
 'Westing wrt to BM launch point, km',...

73

 'Weighting coefficient for impact angle'};
 dlg_title = 'Enter Interceptor launch coordinates';
 num_lines = 1;
 def = {'80','60','1000'};
 answer = inputdlg(prompt,dlg_title,num_lines,def,'on');
 px =str2num(answer{1})*1000;
 py =str2num(answer{2})*1000;
 weight90=str2num(answer{3});
% px=-100000/20;
% py=100000/2;
% weight90=100;
pz=Re;
px_old=px; py_old=py; pz_old=pz;
dist=0;

psi=atan2(Pos_BR(120,2)-py,Pos_BR(120,1)-px); psi_old=psi;
th=90*pi/180; th_old=th;

V=1; V_old=V;

%% Computing Interceptor flight path
for i=1:20%1000
 t=t+dt;
%% Boost phase (vertical launch), t<10s
if t<10
 % Speed, Mach number
 alt=norm([px;py;pz])-Re;
 [ro,press,temp]=STatmos(alt);
 MV = V/sqrt(1.402*287.053*temp);

 % Forces
 g=3.986004418e14/norm([px;py;pz])^2;
 [m_i,Sref] = SMParams3(t);
 CDtable = SMDrag(MV);
 if t<=6, Thrust = 206000; psidot=0; thdot=0;
 else Thrust = 95300; psidot=0; thdot=-0.075;
end
 ny = V/g*cos(th)*psidot;
 nz = V/g*thdot+cos(th);
 nn = sqrt(ny^2+nz^2);
 CL=(2*nn*m_i*g)/(ro*V^2*Sref);
 CD = CDtable(1) + kpolar*CL^2;
 Drag = ro*V^2*CD*Sref/2;
 nx=(Thrust-Drag)/m_i/g;

 alphag=180/pi*nn*m_i*g/(ro*V^2*Sref/2)/13;

 % Kinematics
 Vdot=g*(nx-sin(th));
 psidot=ny*g/V/cos(th);
 thdot=g*(nz-cos(th))/V;

 % Collecting variables
 time_SM(i,1)=t;

74

 Forces_SM(i,1)=nx; Forces_SM(i,2)=ny; Forces_SM(i,3)=nz;
 Model_SM(i,1)=V; Model_SM(i,2)=Vdot;
 Model_SM(i,3)=th; Model_SM(i,4)=thdot;
 Model_SM(i,5)=psi; Model_SM(i,6)=psidot;
 Pos_SM(i,1)=px; Pos_SM(i,2)=py; Pos_SM(i,3)=pz;
 Pos_SM(i,4)=dist;
 Vel_SM(i,1)=V*cos(th)*cos(psi);
 Vel_SM(i,2)=V*cos(th)*sin(psi);
 Vel_SM(i,3)=V*sin(th);
 Acc_SM(i,1)=Vdot*cos(th)*cos(psi)-V*cos(th)*sin(psi)*psidot...
 -V*sin(th)*cos(psi)*thdot;
 Acc_SM(i,2)=Vdot*cos(th)*sin(psi)+V*cos(th)*cos(psi)*psidot...
 +V*sin(th)*sin(psi)*thdot;
 Acc_SM(i,3)=Vdot*sin(th)+V*cos(th)*thdot;

 % Euler integration
 V=V_old+Vdot*dt;
 psi=psi_old+psidot*dt;
 th=th_old+thdot*dt;
 px=px_old+V*cos(th)*cos(psi)*dt;
 py=py_old+V*cos(th)*sin(psi)*dt;
 pz=pz_old+V*sin(th)*dt;

 dist=(dist+abs(norm([px-px_old;py-py_old;pz-pz_old])));

 V_old=V; psi_old=psi; th_old=th;
 px_old=px; py_old=py; pz_old=pz;

else
%% Optimal guidance, t>10s
 if count==Nupd & update==0 % Recomputing the trajectory every
Nupd cycles
 update=update+1;
 fprintf('Starting Interceptor''s Guidance Update
#%2.0f\n',update)
 state=[px;py;pz;V;th;psi;Vdot;thdot;psidot];
 target=[Pos_BR(i+w,1);Pos_BR(i+w,2);Pos_BR(i+w,3);
 Vel_BR(i+w,1);Vel_BR(i+w,2);Vel_BR(i+w,3);
 Acc_BR(i+w,1);Acc_BR(i+w,2);Acc_BR(i+w,3)];
 path=SMGuidance(t,state,target,i); % Calling SMGuidance
function
 if update==1;
 N1=length(path(:,1)); N2=N1;
 else
 N2=length(path(:,1));
 end
 % Identifying variables
 time_Op(:,update)=[path(:,1);zeros(N1-N2,1)];
 px_Op(:,update)=[path(:,2);zeros(N1-N2,1)];
 py_Op(:,update)=[path(:,3);zeros(N1-N2,1)];
 pz_Op(:,update)=[path(:,4);zeros(N1-N2,1)];
 V_Op(:,update)=[path(:,5);zeros(N1-N2,1)];
 th_Op(:,update)=[path(:,6);zeros(N1-N2,1)];
 psi_Op(:,update)=[path(:,7);zeros(N1-N2,1)];
% Vdot_Op(:,update)=[path(:,8);zeros(N1-N2,1)];

75

% thdot_Op(:,update)=[path(:,9);zeros(N1-N2,1)];
% psidot_Op(:,update)=[path(:,10);zeros(N1-N2,1)];
 nx_Op(:,update)=[path(:,8);zeros(N1-N2,1)];
 ny_Op(:,update)=[path(:,9);zeros(N1-N2,1)];
 nz_Op(:,update)=[path(:,10);zeros(N1-N2,1)];
 count=1;
 end
 if count==101 % added by OY 2009-10-08
 count=count-1;
 elseif count==0
 count=1;
 end

 t=time_Op(count,update);
 nx=nx_Op(count,update);
 ny=ny_Op(count,update);
 nz=nz_Op(count,update);
 V=V_Op(count,update);
% Vdot=Vdot_Op(count,update);
 th=th_Op(count,update);
% thdot=thdot_Op(count,update);
 psi=psi_Op(count,update);
% psidot=psidot_Op(count,update);
 px=px_Op(count,update);
 py=py_Op(count,update);
 pz=pz_Op(count,update);

 % Collecting variables
 time_SM(i,1)=t;
 Forces_SM(i,1)=nx; Forces_SM(i,2)=ny; Forces_SM(i,3)=nz;
 Model_SM(i,1)=V; Model_SM(i,2)=Vdot;
 Model_SM(i,3)=th; Model_SM(i,4)=thdot;
 Model_SM(i,5)=psi; Model_SM(i,6)=psidot;
 Pos_SM(i,1)=px; Pos_SM(i,2)=py; Pos_SM(i,3)=pz;
 Pos_SM(i,4)=dist;
 Vel_SM(i,1)=V*cos(th)*cos(psi);
 Vel_SM(i,2)=V*cos(th)*sin(psi);
 Vel_SM(i,3)=V*sin(th);
 Acc_SM(i,1)=Vdot*cos(th)*cos(psi)-V*cos(th)*sin(psi)*psidot...
 -V*sin(th)*cos(psi)*thdot;
 Acc_SM(i,2)=Vdot*cos(th)*sin(psi)+V*cos(th)*cos(psi)*psidot...
 +V*sin(th)*sin(psi)*thdot;
 Acc_SM(i,3)=Vdot*sin(th)+V*cos(th)*thdot;
 Update(i,1)=update;

 % Time step
 count=count+1;
 dist=(dist+abs(norm([px-px_old;py-py_old;pz-pz_old])));
 V_old=V;
 psi_old=psi;
 th_old=th;
 px_old=px;
 py_old=py;
 pz_old=pz;
end % the end of the "if" loop

76

end % the end of the "for" loop

AllSM= [time_SM Forces_SM Model_SM Pos_SM Vel_SM Acc_SM]; % update];

2. SMParam3.m

function [SM_mass,Sref]=SMParams3(t)
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006

% This function calculates the J Matrix and Mass of the intercepter,
% assuming a cruciform rocket in two stages to intercept. This
% function also returns the reference (base) diameter of the missile.

%% Notes:
% The first stage last 6 seconds, the second stage lasts an additional
% 10 seconds. Stage 1 (booster) seperates upon completion. Stage 2
% does not separate after completion

%% List of variables
% dia = reference diameter, base diameter
% l = length, varies by component
% p_SM_st1_fuel = density of stage 1 rocket fuel
% p_SM_st2_fuel = density of stage 2 rocket fuel
% p_SMstr = density of structural material
% r = radius, varies by component
% ro = outer radius, varies by component
% ri = inner radius, varies by component
% SM_mass = total rocket mass
% SM_nose = total mass of nosecone section
% SM_st1_fcr = consumption rate of stage 1 fuel
% SM_st1_fuel = remaining stage 1 fuel based on time and
% consumption rate
% SM_st1_str = total mass of stage 1 structural material
% SM_st1_tfm = total mass of stage 1 fuel
% SM_st2_fcr = consumption rate of stage 2 fuel
% SM_st2_fuel = remaining stage 2 fuel based on time and
% consumption rate
% SM_st2_str = total mass of stage 2 structural material
% SM_st2_tfm = total mass of stage 2 fuel
% t = time
% th = structural thickness
% V_bo dy = volume of body structural material
% V_nose_str = volume of nosecone structural material
% V_nose_str0 = volume of nosecone structural material,
% intermediate value
% V_nose_str1 = volume of nosecone structural material,
% intermediate value
% V_st1_fuel = volume of stage 1 fuel
% V_st1_str = volume of stage 1 structural material

77

% V_st2_fuel = volume of stage 2 fuel
% V_st2_str = volume of stage 2 structural material

%% Structural components
 p_SMstr = 4225;
 th = .0208;

 % Mass of nose cone
 l = .8255;
 r = 0.34/2;
 V_nose_str0 = pi*(l*((r^2+l^2)/(2*r))^2-l^3/3-(((r^2+l^2)/...
 (2*r))-r)*((r^2+l^2)/(2*r))^2*asin(l/((r^2+l^2)/(2*r))));
 l = .8255-th;
 r = 0.34/2-th;
 V_nose_str1 = pi*(l*((r^2+l^2)/(2*r))^2-l^3/3-(((r^2+l^2)/...
 (2*r))-r)*((r^2+l^2)/(2*r))^2*asin(l/((r^2+l^2)/(2*r))));
 V_nose_str = V_nose_str0-V_nose_str1+pi*r^2*th;
 SM_nose = 1.3*V_nose_str*p_SMstr;

 % Mass of Body/Warhead Section
 l = .849;
 ro = 0.34/2;
 ri = 0.34/2-th;
 V_body = l*pi*(ro^2-ri^2);
 SM_body = V_body*p_SMstr+115;

 % Mass of Stage 1 (Mk72 Booster)
 l = 1.72;
 ro = 0.53/2;
 ri = 0.53/2-th;
 V_st1_str = l*pi*(ro^2-ri^2)+2*pi*ro^2*th;
 SM_st1_str = V_st1_str*p_SMstr;

 % Mass of Stage 2 (Mk104 Engine)
 l = 2.88-2*th;
 ro = 0.34/2;
 ri = 0.34/2-th;
 V_st2_str = l*pi*(ro^2-ri^2)+2*pi*ro^2*th;
 SM_st2_str = V_st2_str*p_SMstr;

%% Fuel Components
 % Stage 1 Solid Fuel is HTPB/AP/Al
 l = 1.72;
 ri = 0.53/2-th;
 V_st1_fuel = 0.80*l*pi*ri^2;
 p_SM_st1_fuel = 1860;
 SM_st1_tfm = 468;
 SM_st1_fcr = 468/6;
 % Stage 2 Solid Fuel is TP-H1205/6
 l = 2.88;
 ri = 0.34/2-th;
 V_st2_fuel = 0.60*l*pi*ri^2;
 SM_st2_tfm = 360;
 p_SM_st2_fuel = SM_st2_tfm/V_st2_fuel;

78

 SM_st2_fcr = 360/15;

if t<6
 %% Stage 1 - Stage 1 Fuel is consumed, Stage 2 Fuel is not used.
 SM_st1_fuel = SM_st1_tfm - SM_st1_fcr * t;
 SM_mass = SM_nose+SM_body+SM_st2_str+SM_st2_tfm+SM_st1_str+...
 SM_st1_fuel;
 dia = 0.53;

elseif t<21
 %% Stage 2 - Stage 1 has seperated, Stage 2 Fuel is consumed.
 SM_st2_fuel = SM_st2_tfm - SM_st2_fcr * (t-6);
 SM_mass = SM_nose+SM_body+SM_st2_str+SM_st2_fuel;
 dia = 0.34;

else
 %% Stage 3 - The unpowered nosecone and Stage 2 remains.
 SM_mass = SM_nose+SM_body+SM_st2_str;
 dia = 0.34;

end

Sref=pi*dia^2/4;

return

3. SMDrag.m

Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006
and renamed by Prof Oleg Yakimenko in November 2009

% This function interpolates to determine drag coefficient based on the
% Mach number and the boost or glide phase of the rocket to be utilized
% in the BMFlight.m and SMFlight.m programs for the calculation of
% forces acting on the rocket/missile.

% The tables used were point-plotted from Prof Hutchins' ME4703
% "Missile Flight Analysis" Class Notes

%% Setting a List of Variables

% BDrag = boost phase drag interpolation table
% GDrag = glide phase drag interpolation table
% M = mach number
% Mach = mach number interpolation table

%% Tables:
Mach = [0 0.90 1.1 1.2 1.5 2.0 2.5 3.0...
 3.5 5.0 6.0];
BDrag = [0.1444 0.1444 0.2778 0.2778 0.2308 0.1778 0.1481 0.1296...

79

 0.1185 0.1000 0.0950];
GDrag = [0.2461 0.2461 0.4615 0.4615 0.3615 0.2846 0.2500 0.2192...
 0.2000 0.1500 0.1300];
%plot(Mach,BDrag,'o--',Mach,GDrag,'+-.')

%% Calculation of Drag Coefficient Values:
if M > 6
 M = 6;
end
BDrag = interp1(Mach,BDrag,M,'cubic');
GDrag = interp1(Mach,GDrag,M,'cubic');
Drag=[BDrag;GDrag];
return

B. 3DOF TARGET

1. BRFlight3.m

%% Complementary M-File
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006

% This script integrates the position, velocity, and acceleration
values
% at each time step to determine the flight path of a ballistic missile
% in a gravity turn. The script calls BRParams3.m, ZLDragC.m, and
% STatmos.m

%% Setting a List of Variables

% acc = total acceleration
% alt = altitude
% ax = x component of acceleration
% ay = y component of acceleration
% az = z component of acceleration
% CD = drag coefficient
% Drag = total drag force
% dt = time step interval
% g = gravitational force, based on WGS-84 value of
gravitational
% attraction and altitude
% gm = initial launch angle
% i = interval count
% m_r = rocket mass
% Mspd = rocket speed in Mach (relative to local speed of sound)
% num_BR = number of interations conducted (used for plotting)
% nx = axial force
% press = local atmospheric pressure
% px = x component of position
% py = y component of position
% pz = z component of position

80

% Re = WGS-84 value for Earth's radius
% ro = local atmospheric density
% spd = rocket speed in m/s
% Sref = planar reference area (for drag calculations)
% t = time
% temp = local atmospheric temperature
% Thrust = thrust generated by motor
% vx = x component of velocity
% vy = y component of velocity
% vz = z component of velocity
% Acc_BR = index-based vector of acceleration values
% Forces_BR = index-based vector of force values
% Pos_BR = index-based vector of position values
% time_BR = index-based vector of time values
% Vel_BR = index-based vector of velocity values
% All_BR = index based vector of all rocket values

%% Initializing Variables
dt=0.5; i=0;
Re=6.378137e6;

%% Setting Initial Conditions
px=0;
py=0;
pz=Re;
gm=75*pi/180;
vx=cos(gm);
vy=0;
vz=sin(gm);

%% Computing Ballistic Flight Path
for t=0:dt:200%22%19.5
 i=i+1;

 % Speed, Mach Number
 spd=norm([vx;vy;vz]);
 alt=norm([px;py;pz])-Re;
 if alt<86000
 [ro,press,temp]=STatmos(alt); % Calling STatmos function
 else
 [ro,press,temp]=STatmos(86000); % Calling STatmos function
 end
 Mspd=spd/sqrt(1.402*287*temp);

 % Forces
 g=3.986004418e14/norm([px;py;pz])^2;
 [m_r,Sref]=BRParams3(t); % Calling BRParams3
function
 CD=BRDrag(Mspd); % Calling BRMrag function

 if t<125
 Thrust=105000*9.81;
 CD=CD(1);
 elseif t<240

81

 Thrust=29950*9.81;
 CD=CD(1);
 else
 Thrust=0;
 CD=CD(2);
 end
 Drag=ro*spd^2*CD*Sref/2;
 nx=(Thrust-Drag)/m_r/g;

 % Accelerations
 g=3.986004418e14*pz/norm([px;py;pz])^3;
 ax=g*nx*cos(gm);
 ay=0;
 az=g*nx*sin(gm)-g;
 acc=norm([ax;ay;az]);

 % Collect Variables
 time_BR(i,1)=t;
 Pos_BR(i,1)=px;
 Pos_BR(i,2)=py;
 Pos_BR(i,3)=pz;
 Pos_BR(i,4)=norm([px;py;pz]);
 Vel_BR(i,1)=vx;
 Vel_BR(i,2)=vy;
 Vel_BR(i,3)=vz;
 Vel_BR(i,4)=spd;
 Vel_BR(i,5)=Mspd;
 Acc_BR(i,1)=ax;
 Acc_BR(i,2)=ay;
 Acc_BR(i,3)=az;
 Acc_BR(i,4)=acc;
 Acc_BR(i,5)=nx;
 Forces_BR(i,1)=Thrust;
 Forces_BR(i,2)=m_r;
 Forces_BR(i,3)=Drag;

 % Time Step
 px=px+dt*vx;
 py=py+dt*vy;
 pz=pz+dt*vz;
 vx=vx+dt*ax;
 vy=vy+dt*ay;
 vz=vz+dt*az;
 num_BR=length(time_BR);
end
%plot(time_BR(:,1),(Pos_BR(:,3)-Re)/1000)
AllBR= [time_BR Forces_BR Pos_BR Vel_BR Acc_BR];
clear CD Drag Mspd Sref Thrust acc alt ax ay az dt
clear g gm h i m_r nx press px py pz ro spd t temp vx vy vz

82

2. BRParams3.m

function [BR_mass,Sref,length]=BRParams(t)
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006

% This function calculates the mass of the rocket, assuming a cruciform
% rocket in two stages plus an unpowered nosecone stage. This function
% also returns the reference (base) diameter of the missile.

%% Notes:
% The first stage last 125 seconds, the second stage lasts an
additional
% 110 seconds. The stages seperate upon completion.

%% Setting a List of Variables
% BR_mass = total rocket mass
% BR_nose = total mass of nosecone section
% BR_st1_bt = burntime for stage 1
% BR_st1_fcr = consumption rate of stage 1 fuel
% BR_st1_fuel = remaining stage 1 fuel based on time and consumption
rate
% BR_st1_str = total mass of stage 1 structural material
% BR_st1_tfm = total mass of stage 1 fuel
% BR_st2_bt = burntime for stage 2
% BR_st2_fcr = consumption rate of stage 2 fuel
% BR_st2_fuel = remaining stage 2 fuel based on time and consumption
rate
% BR_st2_str = total mass of stage 2 structural material
% BR_st2_tfm = total mass of stage 2 fuel
% dia = reference diameter, base diameter
% t = time

%% Setting Structural Components
 BR_nose = 250;
 BR_st2_str = 2288;
 BR_st1_str = 9000;

%% Setting Fuel Components
 BR_st1_tfm = 50970;
 BR_st1_bt = 125;
 BR_st1_fcr = BR_st1_tfm/BR_st1_bt;
 BR_st2_tfm = 12912;
 BR_st2_bt = 110;
 BR_st2_fcr = BR_st2_tfm/BR_st2_bt;

if t<125
%% Stage 1 - Stage 1 Fuel is consumed, Stage 2 Fuel is not used
 BR_st1_fuel = BR_st1_tfm-BR_st1_fcr*t;
 BR_mass = BR_nose+BR_st1_str+BR_st1_fuel+BR_st2_str+BR_st2_tfm;
 dia = 2.2;
 length = 2+14+16;

elseif t<240;
%% Stage 2 - Stage 1 has seperated, Stage 2 Fuel is consumed

83

 BR_st2_fuel = BR_st2_tfm-BR_st2_fcr*(t-125);
 BR_mass = BR_nose+BR_st2_str+BR_st2_fuel;
 dia = 1.3;
 length = 2+14;

else
%% Stage 3 - Stage 2 has seperated, only the unpowered nosecone remains
 BR_mass = BR_nose;
 dia = 1.3;
 length = 2;

end
Sref=pi*dia^2/4;
return

3. BRDrag.m

function Drag = BRDrag(M)
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006

% Renamed by Oleg Yakimenko, November 2009 to be used as separate drag
file
% for interceptor and ballistic missile instead of the common ZLDragC.m
file
% used previously

% This function interpolates to determine drag coefficient based on the
% Mach number and the boost or glide phase of the rocket to be utilized
% in the BMFlight.m and SMFlight.m programs for the calculation of
% forces acting on the rocket/missile.

% The tables used were point-plotted from Prof Hutchins' ME4703
% "Missile Flight Analysis" Class Notes

%% List of variables

% BDrag = boost phase drag interpolation table
% GDrag = glide phase drag interpolation table
% M = mach number
% Mach = mach number interpolation table

%% Tables:
Mach = [0 0.90 1.1 1.2 1.5 2.0 2.5 3.0...
 3.5 5.0 6.0];
BDrag = [0.1444 0.1444 0.2778 0.2778 0.2308 0.1778 0.1481 0.1296...
 0.1185 0.1000 0.0950];
GDrag = [0.2461 0.2461 0.4615 0.4615 0.3615 0.2846 0.2500 0.2192...
 0.2000 0.1500 0.1300];

84

%plot(Mach,BDrag,'o--',Mach,GDrag,'+-.')

%% Calculation of drag coefficient for the boost and glide phases:
if M > 6
 M = 6;
end
BDrag = interp1(Mach,BDrag,M,'cubic');
GDrag = interp1(Mach,GDrag,M,'cubic');
Drag=[BDrag;GDrag];
return

C. GUIDANCE ALGORITHMS

1. SMGuidance.m

function path=SMGuidance(time,state,target,i)
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006
% Corrected by O.Yakimenko, August 2007, October 2009

% This function takes in the state of the interceptor and target and
% generates an initial guess at the final conditions (position,
% orientation angles, range, and time to intercept) through a first-
order
% trajectory assumption and iterative process. It then calls the
% fminsearch function using those initial guesses. Finally, it plots
the
% returned optimal flight path and associated variables.

%% List of variables
% best = vector of the variables in the optimal path returned from
% the fminsearch function
% BC = boundary conditions
% cost = cost function value returned from SMGuidanceCost function
% costs = array of the value of the cost variables at each
iteration
% free = variables that fminsearch can modify, specifically
% [tau;thf;psif]
% init = vector of initial estimates
% J = vector of cost function variable values
% N = length of the path vector (used for plotting)
% nmax = maximum acceleration capability of the interceptor,
% altitude dependent
% path = returned time history of the optimal path
% psi = initial interceptor heading angle
% psidot = initial rate of change of interceptor heading angle
% psif = final interceptor heading angle, calculated from final
% conditions estimate
% psit = target heading angle
% Py,Pz = penalty functions on the y and z acceleration
% q = variable, counting trajectory updates during intercept

85

% qq = variable, counting the number of iterations during
optimization
% range = estimate of distance between target and interceptor
% state = state of the interceptor missile, sent from SMGuidance.m
% [px;py;pz;V;th;psi;Vdot;thetadot;psidot];
% states = array of the values of all processes in SMGuidance.m
% target = state of the rocket, sent from SMGuidance.m at i+w,
% synchronizing times
% tau_f = value of the virtual arc
% tgo = time to go to intercept
% th = initial interceptor flight path angle
% thdot = initial rate of change of interceptor flight path angle
% thf = final interceptor flight path angle
% tht = target flight path angle
% tic..toc = MATLAB function to track run time
% trys = vector of optimal path and derivative values
% V = initial interceptor velocity
% V_f = final interceptor velocity
% Vave = average interceptor velocity
% Vdot = initial interceptor acceleration
% x0 = initial inteceptor position
% xd0 = initial interceptor velocity
% xdd0 = initial inteceptor acceleration
% xdf = final inteceptor position
% xdt = current target velocity
% xf = final inteceptor acceleration
% xmult = ratio value (used for plotting)
% xt = current target position
% ymult = ratio value (used for plotting)
% zmult = ratio value (used for plotting)

global Re alphag path % shared by SMFlight3, SMGuidance &
SMTrajectory
global q states % shared by SMFlight3 & SMGuidance
global qq thdot psidot tgo costs trys % ... by SMGuidance &
SMTrajectory

%% Counting trajectory updates during intercept
q=q+1;

%% Initializing Interceptor (all states)
x0=state(1:3);
V=state(4);
th=state(5);
psi=state(6);
Vdot=state(7);
thdot=state(8);
psidot=state(9);
xd0 = [V*cos(th)*cos(psi);
 V*cos(th)*sin(psi);
 V*sin(th)];
xdd0 = [Vdot*cos(th)*cos(psi)-V*cos(th)*sin(psi)*psidot-
V*sin(th)*cos(psi)*thdot;
 Vdot*cos(th)*sin(psi)+V*cos(th)*cos(psi)*psidot-
V*sin(th)*sin(psi)*thdot;

86

 Vdot*sin(th)+V*cos(th)*thdot];

%% Initializing BM (up to the second-order derivatives)
xt =target(1:3);
xdt =target(4:6);
xddt=target(7:9);

%% Estimating time-to-go
tgo1=100; delta=5;
vmaxhyp=2600;
while delta>1
 if tgo1>20
 V_f=vmaxhyp-10*(tgo1-20);
 Vave=(20*vmaxhyp/2+(tgo1-20)*(vmaxhyp+V_f)/2)/tgo1;
 else
 V_f=tgo1*vmaxhyp/20;
 Vave=V_f/2;
 end
 xf=xt+xdt*tgo1;
 tgo2=sqrt((xf(1)-x0(1))^2+(xf(2)-x0(2))^2+(xf(3)-x0(3))^2)...
 /(norm(xdt)+Vave);
 delta=abs(tgo2-tgo1);
 tgo1=(tgo1+tgo2)/2;
end
tgo=tgo1;

%% Initializing optimization
range=sqrt((xf(1)-x0(1))^2+((xf(2)-x0(2)))^2+((xf(3)-x0(3)))^2);
%fprintf('Trajectory update # %2.0f \n',q)
fprintf('\nSlant range to target: %5.1fkm \n',range/10^3)
tau_f =0.00045*range-1000*(q-1); % guess on tau_f
fprintf('Guess on the virtual arc length: %5.1f \n',tau_f)
fprintf('Guess on the time-to-go: %5.1fkm \n',tgo)
 predicted_xdt=xddt*tgo;
tht =atan2(predicted_xdt(3),norm(predicted_xdt(1:2)));
psit=atan2(predicted_xdt(2),predicted_xdt(1));
thf =0;%-tht; % guess on thf
psif =psi;%psit+pi; % guess on psif
free =[tau_f;thf;psif;.1;1;1;-0.001;-0.001];
BC=[x0;xd0;xdd0;time;xt;xdt;xddt];

%% Searching for the minimum performance index
qq=0; % counting iterations to converge
tic
options=optimset('MaxIter',100,'Tolfun',1,'TolX',1);
best = fminsearch(@(x) SMTrajectory(x,BC),free,options); %
Optimization
tcpu=toc;
fprintf('\nIt took %6.0f interations to converge\n',qq)
fprintf('Elapsed time is %6.1f seconds\n',tcpu),
fprintf('Combined performance index is %5.1f\n',costs(end,1))
fprintf(' including: tau_f=%5.1f, t2go=%5.1fs, ImpAngle=%4.1f
off,\n',...

costs(end,2),costs(end,3),180/pi*costs(end,4))

87

fprintf(' Pny=%5.1f and
Pnz=%5.1f\n',costs(end,5),costs(end,6))
%fprintf(' Dtgo=%5.1f and
Altfine=%5.1f\n',costs(end,7),costs(end,8))

tau_f=best(1);
thf =best(2);
psif =best(3);
[best(4);best(5);best(6);best(7);best(8)];

V_f=path(end,5);
xf=path(end,2:4);
fprintf(['Impact occurs at Altitude of %4.1fkm, Northing=%4.1fkm, and
'...
 'Westing=%4.1fkm\n'],[xf(3)-Re xf(1)
xf(2)]/10^3)
%fprintf('with interceptor''s speed of %4.1f km/s\n',V_f/10^3)

xdf=[V_f*cos(thf)*cos(psif);
 V_f*cos(thf)*sin(psif);
 V_f*sin(thf)];

%% Plotting results
%{
xmult=20000/(norm(xd0)+norm(xdt));
ymult=20000/(norm(xd0)+norm(xdt));
zmult=20000/(norm(xd0)+norm(xdt));
nmax=40+(40-10)/(0-50000)*(path(:,4)-Re);

figure('Name','Bird-eye view') % Bird-eye view
plot3(path(:,2)/10^3,path(:,3)/10^3,(path(:,4)-Re)/10^3,'-
.b','Linewidth',2)
hold on, grid
plot3(10^-3*[x0(1)-xmult*xd0(1);x0(1)+xmult*xd0(1)],...
 10^-3*[x0(2)-ymult*xd0(2);x0(2)+ymult*xd0(2)],...
 10^-3*[x0(3)-Re-zmult*xd0(3);x0(3)-
Re+zmult*xd0(3)],'c','Linewidth',2)
plot3(xf(1)/10^3,xf(2)/10^3,(xf(3)-Re)/10^3,'pr','Linewidth',2)
plot3(10^-3*[xf(1)-xmult*xdt(1);xf(1)+xmult*xdt(1)],...
 10^-3*[xf(2)-ymult*xdt(2);xf(2)+ymult*xdt(2)],...
 10^-3*[xf(3)-Re-zmult*xdt(3);xf(3)-
Re+zmult*xdt(3)],'r','Linewidth',2)
plot3(x0(1)/10^3,x0(2)/10^3,(x0(3)-Re)/10^3,'*b','Linewidth',5)
plot3((x0(1)+xmult*xd0(1))/10^3,(x0(2)+xmult*xd0(2))/10^3,...
 (x0(3)-
Re+xmult*xd0(3))/10^3,'^c','linewidth',2)
plot3((xf(1)+xmult*xdt(1))/10^3,(xf(2)+xmult*xdt(2))/10^3,...
 (xf(3)-
Re+xmult*xdt(3))/10^3,'^r','linewidth',2)
hl=legend('Intercept trajectory','Interceptor''s velocity vector',...
 'Impact point','BM''s velocity vector at
intercept','Location','Best');
set(hl,'FontSize',8);
xlabel('Northing (km)'), ylabel('Westing (km)'), zlabel('Altitude

88

(km)')
%title('Interception Geometery','Fontsize',10)
view(-102,8)
axis equal

figure('Name','Combined PI and Virtual arc') % Performance index &
Virtual arc
subplot(211)
semilogy(costs(:,1)/costs(1,1),'h-.'), grid
xlabel('Iteration'), ylabel('Relative PI (PI_i/PI_1')
xlim([1 qq]), axis 'auto y' % ylim([0 2])
subplot(212)
plot(costs(:,2),'h-.'), grid
xlabel('Iteration'), ylabel('Length of virtual arc, \it\tau_f')
xlim([1 qq])

figure('Name','Delta Time-to-go and Altitude violation') % Dtgo &
Altitude fine
subplot(211)
plot(costs(:,7),'h-.'), grid
xlim([1 qq])
xlabel('Iteration'), ylabel('\Delta \itt_{go} \rm(s)')
subplot(212)
plot(costs(:,8)/10^3,'h-.'), grid
xlabel('Iteration'), ylabel('Alt. violation, (km)')
xlim([1 qq])

figure('Name','Impact angle and Time-to-go') % Impact angle & Time-
to-go
subplot(211)
plot(real(180/pi*acos(costs(:,4))),'h-.'), grid
axis([1 qq 60 90])
xlabel('Iteration'), ylabel('Impact angle (^o)')
subplot(212)
plot(costs(:,3),'h-.'), grid
xlabel('Iteration'), ylabel('Time-to-go, \itt_{go} \rm(s)')
xlim([1 qq])

figure('Name','G-load factors') % G-load constraints
subplot(211)
plot(path(:,1),path(:,9),'-b.'), grid
hold on
plot(path(:,1),path(:,10),'--g.')
plot(path(:,1),nmax(:),'r','Linewidth',2)
plot(path(:,1),-nmax(:),'r','Linewidth',2)
hl=legend('n_y','n_z','Dynamic constraints',2);
set(hl,'FontSize',8);
xlabel('Time (s)'), ylabel('Load factor (g)')
subplot(212)
plot(costs(:,5)/10^7,'-b.','Linewidth',2), grid
hold on
plot(costs(:,6)/10^7,'--g.','Linewidth',2)
xlabel('Iteration'), ylabel('Relative penalty')
hl=legend('n_y penalty','n_z penalty','Location','Best');
set(hl,'FontSize',8);

89

xlim([1 qq])

figure('Name','Lambda and Tau profile') % Lambda and tau
subplot(211)
plot(path(:,1),path(:,end),'.'), grid
xlabel('Time (s)'), ylabel('\it\lambda')
subplot(212)
plot(path(:,1),path(:,end-1),'.'), grid
xlabel('Time (s)'), ylabel('\it\tau')

figure('Name','Speed and Angle of attack profile') % SM speed and Angle
of attack
subplot(211)
plot(path(:,1),path(:,5),'.'); grid
xlabel('Time (s)'), ylabel('Speed, V (m/s)')
subplot(212)
plot(path(:,1),alphag,'.'), grid
xlabel('Time (s)'), ylabel('Angle of attack (^o)')

figure('Name','Euler angles profile') % SM Euler angles
subplot(211)
plot(path(:,1),path(:,6)*180/pi,'.','Linewidth',2), grid
hold on
plot(path(end,1),thf*180/pi,'ro')
ylim([-30 90])
xlabel('Time (s)'), ylabel('\theta (^o)')
subplot(212)
plot(path(:,1),path(:,7)*180/pi,'g.','Linewidth',2), grid
hold on
plot(path(end,1),psif*180/pi,'ro')
ylim([-180 180])
xlabel('Time (s)'), ylabel('\psi (^o)')
%}

%% Creating results structure
states{q,1}=path;
states{q,2}=BC;
states{q,3}=free;
states{q,4}=best;
states{q,5}=costs;
return

2. SMGuidanceCost.m

function [cost,J,Py,Pz]=SMGuidanceCost(free,const)
% Written by LT John A. Lukacs IV, Naval Postgraduate School, June 2006

% This function calculates the cost of the proposed trajectory returned
% from the SMTrajectory.m function based on the optimization parameters
% and penalty parameters defined herein. This is a sub-funtion of the

90

% SMGuidance.m function's fminsearch. This cost value is used to
% determine whether the proposed trajectory is optimal. The trajectory
% that returns the minimum value of J is the optimal function.

%% Variable List
% calccost = a global variable of the value of the J function (used
% for plotting)
% const = variables that fminsearch cannot modify, including system
% contraints, specifically [x0;xd0;xdd0;time;xt;xdt;init]
% cost = cost function value returned from SMGuidanceCost.m
function
% costs = vector of values of the cost variables at each iteration
% dist = cumulative distance travelled
% free = variables that fminsearch can modify, specifically
% [tau;tgo;thf;psif]
% init = vector of initial estimates
% J = vector of cost function variable values
% N = length of the path vector (used for plotting)
% nmax = maximum acceleration capability of the interceptor,
% altitude dependent
% nx = axial acceleration command, body frame x
% ny = axial acceleration command, body frame y
% nz = axial acceleration command, body frame z
% path = returned time history of the optimal path, specifically
% [time' X(1:3,:)' V' th' psi' Vdot' thdot' psidot' nx' ny'
nz']
% psi = initial interceptor heading angle
% psidot = initial rate of change of interceptor heading angle
% psif = final interceptor heading angle, calculated from final
% conditions estimate
% Py = penalty function on the y acceleration
% Pz = penalty function on the z acceleration
% qq = counting variable
% t = current time
% tau_f = value of the virtual arc
% tgo; = time to go to intercept
% th = initial interceptor flight path angle
% thdot = initial rate of change of interceptor flight path angle
% thf = final interceptor flight path angle
% time = optimal path time history
% V = initial interceptor velocity
% V_f = final interceptor velocity
% Vdot = initial interceptor acceleration
% X = the optimal path time history in cartesian coordinates
% x0 = initial inteceptor position
% xd0 = initial interceptor velocity
% xdd0 = initial inteceptor acceleration
% xdf = final inteceptor velocity
% xdt = current target velocity
% xt = current target position

[path]=SMTrajectory(free,const);

global calccost costs q qq tgo trys

91

% Initialize Variables
qq=qq+1;
dist=0;
Re=6.378137e6;

%% Identify Variables
time=path(:,1);
X=path(:,2:4);
V=path(:,5);
th=path(:,6);
psi=path(:,7);
Vdot=path(:,8);
thdot=path(:,9);
psidot=path(:,10);
nx=path(:,11);
ny=path(:,12);
nz=path(:,13);
N=length(path(:,1));

tau_f=free(1);
tgo=free(2);
thf=free(3);
psif=free(4);

x0=const(1:3);
xd0=const(4:6);
xdd0=const(7:9);
t=const(10);
xt=const(11:13);
xdt=const(14:16);
init=const(17:19);

V_f=path(N,5);
xdf=[V_f*cos(thf)*cos(psif);
 V_f*cos(thf)*sin(psif);
 V_f*sin(thf)];
tgo=path(N,1);

for i=2:1:N
 dist=dist+abs(norm([X(i,1)-X(i-1,1);X(i,2)-X(i-1,2);X(i,3)-X(i-
1,3);]));
end
nmax=40+(40-10)/(0-50000)*(path(:,4)-Re);

%% Calulate Cost of the chosen trajectory
J=[tau_f;
 tgo;
 100*abs(dot(xdf,xdt)/norm(xdf)/norm(xdt))];
Py=sum(max(0,abs(ny)-nmax).^2);
Pz=sum(max(0,abs(nz)-nmax).^2);

cost=0.33*ones(1,3)*J+norm([Py;Pz]);
costs(qq,1:6)=[cost;J;Py;Pz;];
calccost=cost;

92

return

3. SMTrajectory.m

function cost=SMTrajectory(free,BC)
% This function computes a candidate trajectory and associated cost
based on
% the vector of varied parameters "free" and boundary conditions "BC".

% This is a sub-funtion of the SMGuidance.m function's fminsearch.
% This function creates a 7th order set of equations and evaluates that
set at
% the boundary conditions supplied by the inputs. It then calculates
the time
% history of all the flight vehicle variables, including controls and
reactions,
% necessary to develop that flight path. A plot command set at the end
of this
% function will plot a chart of the iterations at the end of run if
desired.
% Finally, this function calculates the cost of the candidate
trajectory
% combining the value of the performance index and penalties. This cost
value is
% used to determine whether the proposed trajectory is optimal. (The
trajectory
% that returns the minimum value of the cost is the sub-optimal one.)

% O.Yakimenko, Naval Postgraduate School, November 2009

%% List of variables
% A,Ax,Axp,Axpp,Axppp = cell matrices of coefficients of a candidate
reference
% trajectory and their derivatives wrt virtual
arc
% BC = boundary conditions, specifically
[x0;xd0;xdd0;time;xt;xdt;xddt]
% Cx,Cxp,Cxpp,Cxppp = coefficients of a candidate reference
trajectory and
% their derivatives wrt virtual arc
% dtau = tau step value
% dtime = time step value
% free = variable parameters, specifically [tau;thf;psif]
% g = gravitational force
% L = lambda, virtual speed
% Lp = first-order derivative of lambda wrt to virtual arc
% nmax = maximum acceleration capability of the interceptor,
% altitude dependent
% nX,nXp,nXpp,nXppp = norm of reference trajectory and its

93

derivatives
% nx = axial acceleration command, body frame x
% ny = axial acceleration command, body frame y
% nz = axial acceleration command, body frame z
% path = returned time history of the optimal path, specifically
% [time' X(1:3,:)' V' th' psi' nx' ny' nz' tau' L']
% psi = interceptor heading angle
% psidot = rate of change of interceptor heading angle
% qq = variable counting the number of iterations
% t = global current time
% tau = virtual arc
% tau_f = length of the virtual arc
% tgo = time to go to intercept
% th = interceptor flight path angle
% thdot = rate of change of interceptor flight path angle
% thp = first-order derivative of flight path angle wrt to
virtual arc
% time = optimal path time history time=[0;tgo]
% trys = collection of norms [X nX Xp nXp Xpp nXppp] (used for
plotting)
% V = velocity
% Vdot = acceleration
% Vp = irst-order derivative of velocity wrt to virtual arc
% X,Xp,Xpp,Xppp = reference trajectory and its derivatives wrt
tau
% x0,xf = initial and final inteceptor position
% xd0,xdf = initial and final interceptor velocity
% xdd0,xddf = initial and final inteceptor acceleration
% xp,xpp,xppp = boundary conditions (at 0 and f) in the
virtual domain
% xt,xdt,xddt = target position, velocity and acceleration at
time=0

global Re alphag path % shared by SMFlight3, SMGuidance &
SMTrajectory
global Pos_BR Pos_SM Npol Npt kpolar weight90 % ... by SMFlight3 &
SMTrajectory
global qq thdot psidot tgo costs trys % ... by SMGuidance &
SMTrajectory

%% Counting iterations to converge
qq=qq+1;
tgoold=tgo;

%% Assigning variables
tau_f=free(1);
thf =free(2);
psif =free(3);
t=BC(10); % current time in the SM frame to compute it's stage (thrust
and drug)

x0=BC(1:3);
xd0=BC(4:6);
xdd0=BC(7:9);
V(1)=norm(xd0);

94

Vdoti=norm(xdd0);

L(1)=1;%V(1);
Lpi=0;%Vdoti/L(1)

xt=BC(11:13); % Target's coordinates at the moment of detection
xdt=BC(14:16); % Target's velocities at the moment of detection
xddt=BC(17:19); % Target's accelerations at the moment of detection

V(Npt)=2600-1/3*(tgo-20); % SM velocity estimate at impact
Vdotf=-0.3;%-5.9578; % SM acceleartion estimate at impact

L(Npt)=1;%V(Npt);
Lpf=0;%Vdotf/L(Npt);

xf=xt+xdt*tgo+0.5*xddt*tgo^2;
xdf=[V(Npt)*cos(thf)*cos(psif);
 V(Npt)*cos(thf)*sin(psif);
 V(Npt)*sin(thf)];

thdotf=free(7); psidotf=free(8);
xddf=[Vdotf*cos(thf)*cos(psif)-V(Npt)*cos(thf)*sin(psif)*psidotf-...
 V(Npt)*sin(thf)*cos(psif)*thdotf;
 Vdotf*cos(thf)*sin(psif)+V(Npt)*cos(thf)*cos(psif)*psidotf-...
 V(Npt)*sin(thf)*sin(psif)*thdotf;
 Vdotf*sin(thf)+V(Npt)*cos(thf)*thdotf];

%% Converting boundary conditions ito the virtual domain
xp0=xd0/L(1);
xpp0=(xdd0-xd0*Lpi)/L(1)^2;
xppp0=[free(4);free(5);free(6)];

xpf=xdf/L(Npt);
xppf=(xddf-xdf*Lpf)/L(Npt)^2;
xpppf=[0;0;0];

%% Calculating polynomials' coefficients and reference trajectories
 dtau =tau_f/(Npt-1);
 tau =linspace(0,tau_f,Npt);
for i=1:3
A{i}=[x0(i);
 xp0(i);
 xpp0(i);
 xppp0(i);
 (-16*xppp0(i)-4*xpppf(i))/tau_f+(-
120*xpp0(i)+60*xppf(i))/tau_f^2+...
 (-360*xpf(i)-480*xp0(i))/tau_f^3+(840*xf(i)-
840*x0(i))/tau_f^4;
 (60*xppp0(i)+30*xpppf(i))/tau_f^2+(600*xpp0(i)-
420*xppf(i))/tau_f^3+...
 (2340*xpf(i)+2700*xp0(i))/tau_f^4+(5040*x0(i)-
5040*xf(i))/tau_f^5;
 (-80*xppp0(i)-60*xpppf(i))/tau_f^3+(780*xppf(i)-
900*xpp0(i))/tau_f^4+...

95

 (-4080*xpf(i)-4320*xp0(i))/tau_f^5+(-
8400*x0(i)+8400*xf(i))/tau_f^6;
 (35*xppp0(i)+35*xpppf(i))/tau_f^4+(420*xpp0(i)-
420*xppf(i))/tau_f^5+...
 (2100*xpf(i)+2100*xp0(i))/tau_f^6+(4200*x0(i)-
4200*xf(i))/tau_f^7];
 Ax{i} =diag([1, 1, 1/2, 1/6, 1/24, 1/60, 1/120, 1/210
])*A{i};
 Axp{i} =diag([0, 1, 1, 1/2, 1/6, 1/12, 1/20, 1/30
])*A{i};
 Axpp{i} =diag([0, 0, 1, 1, 1/2, 1/3, 1/4, 1/5
])*A{i};
 Axppp{i}=diag([0, 0, 0, 1, 1, 1, 1, 1])*A{i};
 Cx(i,:) =Ax{i}([Npol:-1:1]);
 Cxp(i,:) =Axp{i}([Npol:-1:2]);
 Cxpp(i,:) =Axpp{i}([Npol:-1:3]);
 Cxppp(i,:)=Axppp{i}([Npol:-1:4]);
 X(i,:) =polyval(Cx(i,:),tau);
 Xp(i,:) =polyval(Cxp(i,:),tau);
 Xpp(i,:) =polyval(Cxpp(i,:),tau);
 Xppp(i,:)=polyval(Cxppp(i,:),tau);
end

%% Computing the states
xp12=Xp(1,:).^2+Xp(2,:).^2;
th =atan2(Xp(3,:),sqrt(xp12));
psi =atan2(Xp(2,:),Xp(1,:));
thp =(Xpp(3,:).*xp12-
Xp(3,:).*(Xp(1,:).*Xpp(1,:)+Xp(2,:).*Xpp(2,:)))./...

sqrt(xp12)./(xp12+Xp(3,:).^2);
psip =(Xp(1,:).*Xpp(2,:)-Xpp(1,:).*Xp(2,:))./xp12;

time(1)=t;
g = 3.986004418e14/norm(X(1:3,1))^2;
nx(1) = Vdoti/g+sin(th(1));
ny(1) = V(1)/g*cos(th(1))*psidot;
nz(1) = V(1)/g*thdot+cos(th(1));

[ro,press,temp]=STatmos(norm(X(:,1))-Re);
[m_i,Sref]=SMParams3(time(1));
alphag(1)=180/pi*sqrt(ny(1)^2+nz(1)^2)*m_i*g/(ro*V(1)^2*Sref/2)/13;

for j=2:Npt;
 g=3.986004418e14/norm(X(1:3,j))^2;
 if norm(X(:,j))-Re<86000, [ro,press,temp]=STatmos(norm(X(:,j))-
Re);
 else [ro,press,temp]=STatmos(86000);
end
 MV=V(j-1)/sqrt(1.402*287.053*temp);
 CDtable=SMDrag(MV);
 if time(j-1)<20 Thrust=95300; CD0=CDtable(1);
 else Thrust=0; CD0=CDtable(2);
end
 [m_i,Sref]=SMParams3(time(j-1));

96

 CL=(2*sqrt(ny(j-1)^2+nz(j-1)^2)*m_i*g)/(ro*V(j-1)^2*Sref);
 CD = CD0 + kpolar*CL^2;
 Drag=ro*V(j-1)^2*CD*Sref/2;
 nx(j)=(Thrust-Drag)/m_i/g;

 V(j)=V(j-1)+g*(nx(j-1)-sin(th(j-1)))/L(j-1)*dtau;

 ddist=sqrt((X(1,j)-X(1,j-1))^2+(X(2,j)-X(2,j-1))^2+(X(3,j)-X(3,j-
1))^2);
 dtime=2*ddist/(V(j)+V(j-1));
 L(j)=dtau/dtime;

 ny(j)=V(j)/g*cos(th(j))*psip(j)*L(j);
 nz(j)=V(j)/g*thp(j)*L(j)+cos(th(j));
 alphag(j)=180/pi*sqrt(ny(j)^2+nz(j)^2)*m_i*g/(ro*V(j)^2*Sref/2)/13;

 time(j)=time(j-1)+dtime;
end

tgo=time(end)-time(1);

for i=1:Npt
 nX(i)=norm(X(1:3,i));
 nXp(i)=norm(Xp(1:3,i));
 nXpp(i)=norm(Xpp(1:3,i));
end

trys=[X' nX' Xp' nXp' Xpp' nXpp'];
path=[time' X(1:3,:)' V' th' psi' nx' ny' nz' tau' L'];

%% Computing cost and penalties
V_f=V(end);
xdt=BC(14:16)+BC(17:19)*tgo;
xdf=[V_f*cos(thf)*cos(psif);
 V_f*cos(thf)*sin(psif);
 V_f*sin(thf)];

nmax=40+(40-10)/(0-50000)*(X(3,:)-Re);
if nmax<1, nmax=1; end

J=[tgo;
 abs(dot(xdf,xdt))/norm(xdf)/norm(xdt)];
Py=max([0,abs(ny)-nmax]);
Pz=max([0,abs(nz)-nmax]);
Dtgo=tgoold-tgo;
Altfine=max([0,X(3,end)-Re-60000]).^2+min([0,X(3,end)-Re-9000]).^2;
cost=norm([1,weight90]*J)+10*(Py^2+Pz^2)+100*Dtgo^2+0.1*Altfine;
costs(qq,:)=[cost;tau_f;J;Py;Pz;Dtgo;Altfine];

%% Animating iterations

figure(100),% set(gcf,'Color','w');

97

subplot(3,6,[1 2 7 8])

plot3(Pos_BR(1:300,1)/10^3,Pos_BR(1:300,2)/10^3,(Pos_BR(1:300,3)-
Re)/10^3,...
 '-.r','LineWidth',2)
hold on, ylim([0 60]); %axis equal
plot3(Pos_BR(140,1)/10^3,Pos_BR(140,2)/10^3,(Pos_BR(140,3)-Re)/10^3,...
 '^g','LineWidth',2)
plot3(Pos_SM(1:19,1)/10^3,Pos_SM(1:19,2)/10^3,(Pos_SM(1:19,3)-
Re)/10^3,...
 '.k','LineWidth',2)

plot3(X(1,:)/10^3,X(2,:)/10^3,(X(3,:)-Re)/10^3,'Linewidth',3); grid on
plot3(xf(1)/10^3,xf(2)/10^3,(xf(3)-Re)/10^3,'pk','MarkerSize',11)
plot3(X(1,end)/10^3,X(2,end)/10^3,(X(3,end)-
Re)/10^3,'pr','MarkerSize',9);
view(-102,8)
hl=legend('BM trajectory','BM detection','Unguided ascend',...
 'Guided flight','Predicted intercept point','Actual intercept
point',...
 'Location','North'); set(hl,'FontSize',7)
hold off
%{
axis([0 1.1e5 -1e4 1.1e5 0 7e4]/10^3)
xlabel('Northing, x (km)'),ylabel('Westing, y (km)'),zlabel('Altitude
(km)')
 subplot(3,6,[13 14])
 plot(path(:,1),path(:,9),'--b','Linewidth',2)
 hold on; grid on
 plot(path(:,1),path(:,10),'-.g','Linewidth',2)
 plot(path(:,1),nmax(:),'r','Linewidth',2)
 plot(path(:,1),-nmax(:),'r','Linewidth',2)
 axis([10 time(Npt) -45 45]);
 xlabel('Time (s)'), ylabel('Load Factor (g)')
 leg2=legend('n_y','n_z','Dynamic
constraints','Location','Best');
 set(leg2,'FontSize',7)
 hold off
 subplot(3,6,3)
 plot(time,X(1,:)/10^3,'Linewidth',2); grid on
 axis([10 time(Npt) 1e4/10^3 1.1e5/10^3])
 title('x_1 (km)')
 subplot(3,6,9)
 plot(time,X(2,:)/10^3,'Linewidth',2); grid on
 axis([10 time(Npt) -1e4/10^3 1.1e5/10^3])
 title('x_2 (km)')
 subplot(3,6,15)
 plot(time,(X(3,:)-Re)/10^3,'Linewidth',2); grid on
 axis([10 time(Npt) 0 7e4/10^3])
 title('x_3 (km)'), xlabel('Time (s)')
subplot(3,6,4)
plot(time,Xp(1,:)/10^3,'Linewidth',2); grid on
axis([10 time(Npt) -45 45]); axis 'auto y'
title('x_1'' /10^3')
 subplot(3,6,10)

98

 plot(time,Xp(2,:)/10^3,'Linewidth',2); grid on
 axis([10 time(Npt) -45 45]); axis 'auto y'
 title('x_2'' /10^3')
 subplot(3,6,16)
 plot(time,Xp(3,:)/10^3,'Linewidth',2); grid on
 axis([10 time(Npt) -45 45]); axis 'auto y'
 title('x_3'' /10^3'), xlabel('Time (s)')
 subplot(3,6,5)
 plot(time,Xpp(1,:)/10^2,'Linewidth',2); grid on
 axis([10 time(Npt) -45 45]); axis 'auto y'
 title('x_1'''' /10^2')
 subplot(3,6,11)
 plot(time,Xpp(2,:)/10^2,'Linewidth',2); grid on
 axis([10 time(Npt) -45 45]); axis 'auto y'
 title('x_2'''' /10^2')
 subplot(3,6,17)
 plot(time,Xpp(3,:)/10^2,'Linewidth',2); grid on
 axis([10 time(Npt) -45 45]); axis 'auto y'
 title('x_3'''' /10^2'), xlabel('Time (s)')
 subplot(3,6,6)
 hold on
 plot(qq,time(Npt)-time(1),'+c','Linewidth',1); grid on
 hold off
 axis([1 200 40 60]); axis 'auto y'
 title('Time-to-go (s)')
 subplot(3,6,[12 18])
 hold on
 plot(qq,cost,'+m','Linewidth',1); grid on
 axis([1 200 0 100]); axis 'auto y'
 hold off
 title('Performance Index'), xlabel('Iteration')
%}
return

D. COMMON FUNCTION - STANDARD ATMOSPHERE

1. STatmos.m

function [Density, Pressure, Temperature]=STatmos(alt)
% Calculation of the 1976 standard atmosphere up to 86 km
% Code source: http://www.pdas.com/atmos.htm
% Run ezplot('STatmos',[0,86000]) to see the plot of density vs
altitude
%
% Author: Yakimenko, Oleg A.
% Date: September, 27 2005
% E-mail: oayakime@nps.edu
%
alt=alt/1000; % Convert altitude from m to km
%% --- Initialize values for 1976 atmosphere

99

REARTH=6369.0; % Earth radius (km), depends on Latitude
GMR=34.163195; % Gas Constant
htab=[0.0, 11.0, 20.0, 32.0, 47.0, 51.0, 71.0, 84.852]; % Geometric alt
ttab=[288.15, 216.65, 216.65, 228.65, 270.65,... % Temperature
 270.65, 214.65, 186.946];
ptab=[1.0, 2.233611E-1, 5.403295E-2, 8.5666784E-3,... % Relative pres
 1.0945601E-3, 6.6063531E-4, 3.9046834E-5, 3.68501E-6];
gtab=[-6.5, 0.0, 1.0, 2.8, 0.0, -2.8, -2.0, 0.0]; % Temp gradient
P0=101325.0; Ro0=1.225;

%%--- Convert geometric to geopotential altitude
 if alt>250
 alt = 100
 end

 h=alt*REARTH/(alt+REARTH);

%% --- Binary search for altitude interval
 i = 1;
 j = 8;

while j > i+1
 k=fix((i+j)/2);
 if h<htab(k);
 j = k;
 else
 i = k;
 end
end

%% --- Calculate local temperature
 tgrad = gtab(i);
 tbase = ttab(i);
 deltah = h - htab(i);
 tlocal = tbase + tgrad*deltah;
 theta = tlocal/ttab(1);

%% --- Calculate local pressure
if (tgrad == 0.0)
 delta = ptab(i)*exp(-GMR*deltah/tbase); % Isothermal layers
else
 delta = ptab(i)*(tbase/tlocal)^(GMR/tgrad); % Non-isothermal
layers
end

%% --- Calculate local density
sigma = delta/theta;

%% --- Current atmosphere parameters corresponding to Altitude alt
Temperature=tlocal; Density=Ro0*sigma; Pressure=P0*delta;
return

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

APPENDIX E: DETAILED DESCRIPTION OF TRAJECTORY
SHAPING GUIDANCE (REPRODUCED FROM [10])

 A method that overcomes fatal characteristics of modern guidance laws is the key

driving factor in the development of this advanced guidance law. The guidance law will

determine the near-optimal flight path from the interceptor position to a predicted target

position for the interceptor to follow to intercept, and then derive the set of control

commands necessary to execute that flight. This section will describe a method for

deriving that trajectory using calculus of variations based on three cues: high-order

polynomials as a reference function for the flight path, a preset thrust history as one of

the controls, and a few optimization parameters. The trajectory optimization problem is

then converted into a nonlinear programming problem and solved numerically.

A. PROBLEM STATEMENT

Among all admissible trajectories,

  
1 2

0

() { (), (), , ()}

() , ,

T
r

r r
f

z t z t z t z t S

S z t Z E t t t

 

     




 (4.A.1)

that satisfy:

1. The system of differential equations (dynamic constraints):

 (, , ,), 1,i i t z u a i rfz  
 

 (4.A.2)

where the vector of controls is

 1 2() (), (), , () , ,
Т m m

mu t u t u t u t m r u U E   
 

 and the vector of

missile parameters is 1 2(, , ,), p p
pa a a a a A E  

 
 ;

2. The initial conditions:

  0 0 0 0() , r rz t S S z Z E    
 (4.A.3)

  0 0 0 0() , m mu t R R u U E   
 

 (4.A.4)

and the final conditions:

      , ; 0, 1,r r
f f f f j fz t S S z Z E G z t j l       

 (4.A.5)

  () , m m
f f f fu t R R u U E   

 
 (4.A.6)

3. The constraints imposed on the state space

102

  1 2(,) (,), (,),..., (,) 0
Т

t z t z t z t z    
    

 (4.A.7)

on the controls

  1 2(, ,) (, ,), (, ,),..., (, ,) 0
Т

t z u t z u t z u t z u    
       

 (4.A.8)

and on the controls derivatives

  1 2(, ,) (, ,), (, ,),..., (, ,) 0
Т

t u u t u u t u u t u u    
       

    (4.A.9)

Find the optimal trajectory, ()optz t


, that minimizes the integral function

0

0(,) (, ,)
ft

f

t

J K x x L t z u dt  


 (4.A.10)

and the corresponding optimal controls, ()optu t


, where K, L are defined functions.

B. CALCULUS OF VARIATIONS

Calculus of variations deals with functions of functions, termed functional,

instead of functions of some variable or variables as in ordinary calculus. Specific

interest is in the externals of these functionals - those making the functional attain a

maximum or minimum value [Ref 15]. There are two broad categorizations of methods

to solve these problems, indirect methods and direct methods.

Indirect methods resolve the problem into a differential equation, usually via the

difference of a series of equations of motion and thus solve the general theory of partial

differential equations. This method does not assume anything about the solution, leading

to a very complete and perfectly precise answer; however, one must integrate the

resultant equation to derive the extremals. The precision greatly increases the

computational complexity, and therefore the time required to solve, for negligible gain in

optimality. Further, these differential equations are difficult to integrate except in the

simplest of cases, and nearly impossible to program [Ref 19]. This approach is further

complicated by the need to solve the problem in a specified fixed region instead of in the

small neighborhood of some point. These difficulties can be overcome by using direct

methods, which do not reduce the variational problems to ones involving differential

equations.

103

 The fundamental idea of direct methods is to consider a variational problem as a

limit problem of the extreme of a function of a finite number of variables that can be

solved by numerical methods. Two basic direct methods are the Rayleigh-Ritz and

Galerkin methods, which assume the solution to be an unknown function but of a certain

form containing a set of unknown coefficients (themselves functions of the boundary

conditions), which are then found by minimization. The practical result is that the

problem has been reduced from calculus to algebra, but at the cost of a significant

increase in the number of simultaneous equations to be solved. It is for this reason that

little work was done in this field until the advent of computer technology. The possible

solution set is restricted to a smaller space than the original equation because of the initial

assumption regarding the solution, but the resultant problem can be programmed and

quickly solved using computers; however, the solutions are only an approximation of the

original solution. Therefore these solutions can only be regarded as near-optimal

solutions.

 Professor Taranenko [Ref 19] first applied the ideas of direct methods and the

combination of Ritz and Galerkin methods to the problems of flight dynamics by

identifying a reference function for the flight vehicle’s motion and velocity

 0
0 0

0

() (), 1, 4i i if i i
f

x x x x i
  
 


    


 (2.1)

where 1 2 3, , ,x x x are the Cartesian coordinates for the flight path, 4x is the velocity, and

()i  is a continuous, unequivocal, differentiable function satisfying the boundary

conditions 0() () 0i i f     . Any function that satisfies those conditions would be

acceptable for use. Taranenko called  a virtual arc. It is this critical variable that allows

the separation of the spatial trajectory from the velocity and thus optimize one or the

other, or both independently. The specific task determines the appropriate choice of  ,

but in general any continuous, monatomic function is acceptable: time, path, energy, etc.

The remaining state parameters and flight controls are then determined by solving the

inverse problem of flight dynamics. Rather than starting with the control time histories

and integrating them to determine the flight path, this method starts with a flight path and

determines the control time histories necessary to create it.

104

 In order to implement a solution to this problem that can be solved in real time, a

further restriction must be made. The continuous problem must be discretized to reduce

the infinite variational problem to one of optimization of few parameters at numerous

sampling points. This allows for the optimization of the planar trajectory of the missile at

several points along the path by presetting the state variables and one of the controls’

time histories, and then solving the inverse flight dynamics problem.

These methods have all previously been used for off-line optimization of

trajectories, but none has yet been applied to the real-time onboard optimization of a

missile flight path. Yakimenko detailed a method called a Direct Method for Rapid

Prototyping, which he applied to short term spatial trajectories of aircraft maneuvers

using fixed boundary points [Ref 19]. The developed program presented here uses similar

numerical method to provide a near-optimal spatial trajectory that is completely defined

by a few optimization parameters, but as will be discussed shortly, has fluid final

boundary conditions.

Though the method artificially limits the possible trajectory variations, it does

guarantee the following [Ref 19]:

1. The boundary conditions are satisfied a priori,

2. The control commands are physically realizable and smooth,

3. Only a few variable parameters are used, thus ensuring that the iterative

process converges well,

4. The near-optimal solution is very close to the optimal one.

A simple two dimensional variation program of a similar 7th order system will

demonstrate how the direct method varies the flight path according to the boundary

conditions. The boundary conditions are

10 20 1 2

10 20 1 2

10 20 1 2

10 20 1 2

0 0 1 1

0.2 1 0.1 1

0.1 0.1 0.1 0.1

var 0.1 0.1 0.1

f f

f f

f f

f f

x x x x

x x x x

x x x x

x''' x''' x x'''

   
       
      

   

105

where the third derivative of the initial 1x condition has been set to vary according to

10 { 0.4; 0.1;0.2;0.5}x'''   

and the length of the virtual arc varies according to

1,2,...,10f 

The resulting set of paths is shown in figure 26 and the first derivative of the path is

shown in figure 27. It is important to note that the first derivative is not “velocity” but is

instead the “rate of change of the path”. It is proportional but not equal to velocity,

specifically because of the virtual variable  as discussed previously. Each line

represents a different choice of f , showing that by varying that value the length of the

path can change drastically. The algorithm developed here will use this technique to

derive the optimal flight path.

0 0.5 1 1.5 2
0

2

4

6

f
=var

d3x/d3|
0
=-0.4

0 0.5 1 1.5 2
0

2

4

6

f
=var

d3x/d3|
0
=-0.1

0 0.5 1 1.5 2
0

2

4

6

x
1

x 2

f
=var

d3x/d3|0=0.2

0 0.5 1 1.5 2
0

2

4

6

f
=var

d3x/d3|
0
=0.5

Figure 37. Variation of Path with f and 10x (after [Ref 18])

106

0 2 4 6 8 10
0

1

2

3

4

f
=var

d3x/d3|0=-0.4

0 2 4 6 8 10
0

1

2

3

4

f=var

d3x/d3|0=-0.1

0 2 4 6 8 10
0

1

2

3

4



(
x/ 12 +

x/
22)

f
=var

d3x/d3|0=0.2

0 2 4 6 8 10
0

1

2

3

4

f
=var

d3x/d3|0=0.5

Figure 38. Variation of First Derivative of Path with f and 10x

C. PROGRAM DEVELOPMENT

1. Boundary Conditions

Using equations (3.2) and (3.3), in addition to the controls , ,x y zn n n , it is possible

to construct the vector of state variables  1 2 3, , , , ,
T

z x x x V   and the vector of controls

{ , , }T
x y zu n n n . The model for thrust, drag, and missile characteristics is the same as

previously used in Chapter 3.

 The beginning assumption is that the following data is known by the interceptor’s

onboard computer:

107

 Interceptor Target

Body Frame

1 0 10

2 0 20

3 0 30

0 0 10

0 0 20 10

0 0 30 20

0 0 30

0 0

()

()

()

()

()

()

()

()
y y

z z

x t x

x t x

x t x

V t V x

t x x

t x x

n t n x

n t n

 






  






 

 



1 1

2 2

3 3

1

2

3

()

()

()

()

()

()

f f

f f

f f

f f f

f f f

f f f

x t x

x t x

x t x

V t V x

t x

t x 






  








Earth Centered
Inertial

1 2 3(), (), ()SM SM SMx t x t x t

1 2 3(), (), ()SM SM SMx t x t x t  

1 2 3(), (), ()SM SM SMx t x t x t  

1 2 2(), (), ()BR BR BRx t x t x t

1 2 3(), (), ()BR BR BRx t x t x t  

Table 9. Interceptor Known Data

The target data will be used to determine the final boundary conditions of the

interceptor missile according to the time until intercept, t :

Position:

1 10 10

2 20 20

3 20 20

SM BR BR
f

SM BR BR
f

SM BR BR
f

x x x t

x x x t

x x x t

  

  

  







 (4.C.1)

Heading and Flight Path Angle:

3

2 2
1 2

2

1

, where arctg
2

, where arctg

BR
SM BR BR
f f f BR BR

BR
SM BR BR
f f f BR

x

x x

x

x

  

  

  


 



 





 (4.C.2)

which, when combined with reasonable estimates of the final values of the velocity, V,

and the time rate of change of velocity,V , heading (0 ), and flight path angle

(0 ), yields the final conditions:

108

1

2

3

cos cos

cos sin

sin

SM
f f f f

SM
f f f f

SM
f f f

x V

x V

x V

 

 















 (4.C.3)

and

1

2

3

cos cos sin cos cos sin

cos sin sin sin cos cos

sin cos

SM
f f f f f f f f f f f f

SM
f f f f f f f f f f f f

SM
f f f f f f

x V V V

x V V V

x V V

   

   

  

     

     

 

 

 



 (4.C.4)

In order to ensure a smooth flight path at the initial and final points, an additional

constraint of

1 1

2 2

3 3

0

0

0

SM SM
i f

SM SM
i f

SM SM
i f

x x

x x

x x

 

 

 

 

 

 

 (4.C.5)

will be imposed on the system at the initial and final conditions.

2. Separating and Recombining Space and Time

 As discussed previously, in order to independently optimize the spatial trajectory

and the velocity, the reference function will be derived as a function of  . The boundary

conditions cannot, therefore, be defined as functions of time derivatives as in equations

(4.C.3) – (4.C.5). A connection between the spatial and time domains must therefore be

introduced, , which is defined as

 ()
d

dt

   (4.C.6)

and is termed the virtual speed [Ref 19]. This allows for the independent variation of the

speed profile along the same paths according to any other convenient reference. In this

case the known thrust profile, xn , will be utilized by integrating the third equation of

(2.B.3) and applying the virtual speed

(sin)

() (sin)
()

x
x

g nd
V g n

dt

 
 
    (4.C.7)

109

Further use of the virtual speed allows the recalculation of the initial and final boundary

conditions, transforming them from the time frame to the spatial frame. For this, the

obvious relations

2

() () ()

(() ())
() 1, 2,3

i
i i

i
i i i

dx d
x x

d dt
d x d

x x x i
d dt

   


     


 


    



 

 (4.C.8)

which when rearranged defines the first and second derivatives of the missile coordinates

as

  1 2 1, 2,3i i i i ix x x x x i           (4.C.9)

Using the values of  and  defined as

 1 1
0 0 0 0 0, , f f f f fV V V V V V          (4.C.10)

3. Reference Trajectory

The knowledge of the initial and final position plus the initial and final conditions

of the first and second time derivates allows for the construction of a 7th-order

polynomial (the maximum orders of the time derivatives of the missile coordinates at the

initial and final points plus one) to describe the reference function of the aircraft

coordinates (1, 2,3)ix i  . The following are introduced as the reference functions [Ref

19]:

5

0

15

1

5
2

2

5
3

3

(max(1, 2))!
()

!

(max(1, 2))!
()

(1)!

()

() (2)

k

i ik
k

k

i ik
k

k
i ik

k

k
i ik

k

k
x a

k

k
x a

k

x a

x k a





 

 


















 


 

  









 (4.C.11)

Or written another way,

110

2 3 4
3 4 5 6 7

2 3 4 5
2 3 4 5 6 7

2 3 4 5 6
1 2 3 4 5 6 7

2 3 4 5
0 1 2 3 4 5

()

1 1 1 1
 ()

2 3 4 5
1 1 1 1 1

 ()
2 6 12 20 30
1 1 1 1 1

 ()
2 6 24 60 120

i i i i i i

i i i i i i i

i i i i i i i i

i i i i i i i i

x"' a a a a a

x" a a a a a a

x' a a a a a a a

x a a a a a a a

    

     

      

     

    

     

      

       6 7
6 7

1

210 ia 

(4.C.12)

 The coefficients can be determined by solving the equations simultaneously,

0

1

2

3
2 3 4 5 6 71 1 1 1 1 1

2 6 24 60 120 210 4
2 3 4 5 61 1 1 1 1

2 6 12 20 30 5
2 3 4 51 1 1 1

2 3 4 5 6
2 3 4

7

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1

0 1

0 0 1

0 0 0 1

i

i

i

i

f f f f f f f i

f f f f f f i

f f f f f i

f f f f i

a

a

a

a

a

a

a

a

      
     

    
   

 
 
 
 
 
 
 
 
 
 
 
  

0

0

0

0

i

i

i

i

if

if

if

if

x

x

x

x'''

x

x

x

x'''

 
   
  
 
     
  

  
   
       

 (4.C.13)

 Finally, by substituting the corresponding values of 0 0 0, , (1, 2,3)i i ix x x i   for

0 0  , and , , (1, 2,3)if if ifx x x i   for f  (where f is the first optimization parameter,

the virtual arc), results in a set of 24 linear algebraic equations for 21 unknown

coefficients (1,2,3, 0,1,..,7)ika i k 

0 0 1 0 2 0 3

0 0 0 0
4 2 3 4

0 0
5 2

4 16 60 120 360 480 840 840

30 60 420 600

i i i i i i i

if i if i if i if i
i

f f f f

if i if i
i

f

a x a x a x a x

x x x x x x x x
a

x x x x
a

   

 

     
          

   

     
  0 0

3 4 5

0 0 0 0
6 3 4 5 6

0 0 0
7 4 5 6

2340 2700 5040 5040

60 80 780 900 4080 4320 8400 8400

35 35 420 420 2100 2100 4

if i if i

f f f

if i if i if i if i
i

f f f f

if i if i i if
i

f f f

x x x x

x x x x x x x x
a

x x x x x x
a

 

   

  

   
 

          
   

         
    0

7

200 4200if i

f

x x




(4.C.14)

111

4. Inverse Dynamics

 The numerical solution develops a reference trajectory over a fixed set of N points

equidistantly placed along the virtual arc. The virtual interval is

1

f

N


 


 (4.C.15)

and the corresponding time interval is

1
3 2

2
; ; 1

1

1

()

2 , 1, 2,..., 1
i j i j

j
j j

x x

t j N
V V





 
 

    



 (4.C.16)

where jV and 1jV  is determined by integrating equation (4.C.7). N is any convenient

number, chosen to be 100 in this program.

 The value of jV also allows for the determination of both and   by rearranging

equations (2.B.2) and substituting the virtual velocity

3;

2 2
1; 2;

2;

1;

arctg

arctg

j
j

j j

j
j

j

x

x x

x

x








 






 (4.C.17)

The controls and y zn n are found by rearranging equations (2.B.3) to be

;

;

cos

(cos)

j
y j j j

j
z j j j

V
n

g

V
n

g



 

 

 




 (4.C.18)

where the angular derivatives are determined as

2 2
2 3 1 2 3 1 2

2 2 3/ 2
1 2

2 1 2 1 2
2

1

() ()
cos

()

)
cos

j

j

x x x x x x

x x

x x x x

x

 
       


 

   
  






 (4.C.19)

112

5. Cost and Penalty Functions

Finally, the calculation of the flight path results in a set of functions that must be

minimized, which occurs through a Cost Function (CF) and a Penalty Function (PF).

These functions must be carefully chosen to ensure that the optimal path is truly feasible,

desirable, and obtainable. A simple example of a CF is fJ t , the minimal time

problem, or ()J u t , the minimum fuel problem, though there is no limit to the number

or variation of the Cost Function.

In this case, the CF was chosen to optimize three properties simultaneously;

minimize the length of the virtual arc, f , minimize the time to intercept, got , and

maximize the impact angle of the interception. The CF for this program is written as

 1 1 2 2 3 3

BR SM

f go BR SM

V V
J w k w k t w k

V V
 

  
 

  (4.C.20)

Each item must be scaled appropriately using the scaling factors 1 2 3, , ,k k k so that

they are all roughly equivalent when optimized, e.g. the anticipated intercept time is

counted in tens of seconds while the cosine of the impact angle will vary from zero to

one. Failure to weight them properly will skew the results of the cost function.

Additionally, through the weighting functions 1 2 3, , ,w w w a trade-off analysis can be

conducted and variables can be included or excluded as desired.

The first two variables,  and got , are necessary to ensure the system’s optimal

solution is actually physically realizable. Without them, the system will continue to

optimize the intercept well beyond the capabilities of the missile or even physical reality.

One example is that, in a purely mathematical sense, there is no problem with a negative

velocity (yet in the physical world that makes no sense) and the program might try a

program that would intercept after the missile velocity has gone past zero and into

negative numbers (of course, the missile would stop flying long before it even reaches

zero). One might be tempted to include a myriad of parameters to cover all possible

eventualities; however, including these two parameters sufficiently accounts for nearly

every physical limitation and eliminates the need for having a long list of cost variables.

113

 The third variable in the CF was chosen in order to maximize the angle of impact

upon interception. This reflects the need, described in Chapter 1, to maximize the kinetic

energy in order to ensure the interceptor disables the target. The cost is calculated using

a simple dot product relationship

(,)

cos
SM BR
f f

SM BR
f f

dot x x

x x
 

 
 

 
 

 (4.C.21)

which will have a minimum value of zero when the impact angle is maximum.

The PF is chosen to ensure that certain conditions are not violated or exceeded,

such as physical limitations. In this case, the PF is on the maximum acceleration in the y

and z direction. Zarchan showed that acceleration capability is dependent on altitude and

speed [Ref 21]. The PF has been set up to reflect this by varying between 40 g’s at sea

level to 10 g’s at 50,000 ft.

These are not the only CF or PF variables that can be included. The choice of

variables to include is situation dependant and may be modified to meet whatever the

needs of the situation demand.

114

THIS PAGE INTENTIONALLY LEFT BLANK

115

LIST OF REFERENCES

[1] “The Proliferation of Delivery Systems,”
https://www.cbo.gov/ftpdocs/48xx/doc4899/doc29.pdf (accessed 11/07/2009).

[2] “Frontline,” “ missile war,” “techonology,”
http://www.pbs.org/wgbh/pages/frontline/shows/missile/technology/basics.html#b
ush (accessed on 11/08/2009).

[3] http://steeljawscribe.blogspot.com/2007/05/missile-defense-101-icbm-
fundamentals.html (accessed on 11/08/2009).

[4] Lukacs IV, John and Yakimenko, Oleg, “Trajectory-Shaping Guidance for
Interception of Ballistic Missiles in the Boost Phase,” Journal of Guidance,
Control, and Dynamics, Vol 31, No. 5, Sep-Oct 2008, pp 1524–1531.

[5] Missile Defense Agency, “Ballistic Missile Defense System Overview,”
http://www.mda.mil/mdalink/pdf/bmdsbook.pdf (accessed 11/09/2009).

[6] Raytheon, “Missile Trajectory Phases,”
http://www.raytheonmissiledefense.com/phases/index.html (accessed
11/08/2009).

[7] Bardanis, Florios, “Kill Vehicle Effectiveness for Boost Phase Interception of
Ballistic Missiles,” Master’s thesis, Naval Postgraduate School, Monterey, CA,
2004.

[8] Duncan Lennox, “Ballistic Missile Defense,” Jane’s Strategic Weapon Systems
40, p. 4, November 27, 2003.

[9] Yakimenko, O.A., AE4903 “Direct Method of Calculus of Variations as the
Means for Rapid Prototyping of Optimal Trajectories” Course Notes, Winter
2006.

[10] Lukacs IV, John, “New Missile Guidance Algorithm For The Interception Of
Ballistic Missiles In The Boost Phase,” Master’s thesis, Naval Postgraduate
School, Monterey, CA, 2006.

[11] Bruce Cumings, “Kim Jong Il confronts Bush—and wins. A New Page in North-
South Korean Relations,” http://www.japanfocus.org/-Bruce-Cumings/2539,
(accessed 12/3/2009).

[12] http://www.fototime.com/172AB9D339F5656/orig.jpg (accessed 12/3/2009).

[13] Federation of American Scientists, “Taep’o-dong 2,”
http://www.fas.org/nuke/guide/dprk/missile/td-2.htm (accessed 11/08/2009).

116

[14] http://www.raytheon.com/capabilities/rtnwcm/groups/rms/documents/content/rtn_
rms_ps_sm6_datasheet.pdf (accessed 11/8/2009).

[15] http://www.missilethreat.com/repository/imgLib/icbm%20comparison%20chart%
20small%20labeled%20%20%20mda.jpg (accessed 11/8/2009).

[16] Zarchan, Paul, Tactical and Strategic Missile Guidance Fourth Edition, Vol. 199,
American Institute of Aeronautics and Astronautics, Reston, VA, 2002

[17] Jane’s Strategic Advisory Services, “RIM-66/-67/-156 Standard SM-1/-2 and
RIM-161 SM-3”,
http://www4.janes.com/K2/doc.isp?K2DocKev=/content1/janesdata/binder/isws/i
sws0208.htm (accessed 10/26/2005).

[18] Stevens, Brian, and Lewis, Frank, Aircraft Control and Simulation Second
Edition, John Wiley and Sons, 2003.

[19] Hutchins, Robert, ME4703 “Missile Flight Analysis” Course Notes, Spring 2005.

[20] Zipfel, Peter, Modeling and Simulation of Aerospace Vehicle Dynamics,
American Institute of Aeronautics and Astronautics, Reston, VA, 2000.

[21] http://media.photobucket.com/image/proportional%20navigation/xu-
an/proportional_guid.jpg (accessed 11/9/2009).

[22] Fleeman, Eugene, Tactical Missile Design Second Edition, American Institute of
Aeronautics and Astronautics, Reston, VA, 2000.

117

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Temasek Defense Systems Institute

National University of Singapore
Singapore

4. Air Manpower Department

Headquarters, Republic of Singapore Air Force
Singapore

5. Professor Oleg Yakimenko

Graduate School of Mechanical and Aeronautical Engineering
Naval Postgraduate School
Monterey, California

6. Mr Christopher Adams

Graduate School of Mechanical and Aeronautical Engineering
Naval Postgraduate School
Monterey, California

7. LTC Weng Wai Leong

Headquarters, Republic of Singapore Air Force
Singapore

